CS-I84: Computer Graphics

Lecture \#9: Scan Conversion

Prof. James O'Brien
University of California, Berkeley

Today

- 2D Scan Conversion
- Drawing Lines
- Drawing Curves
- Filled Polygons
- Filling Algorithms

Tuesday, October 7, 2008

Drawing a Line

- Basically, its easy... but for the details
- Lines are a basic primitive that needs to be done well...

Drawing a Line

- Basically, its easy... but for the details
- Lines are a basic primitive that needs to be done well...

4

Tuesday, October 7, 2008

Drawing a Line

- Some things to consider
- How thick are lines?
- How should they join up?
- Which pixels are the right ones?

Drawing a Line

- Some things to consider
- How thick are lines?
- How should they join up?
- Which pixels are the right ones?

Tuesday, October 7, 2008

Tuesday, October 7, 2008

10

Tuesday, October 7, 2008

Tuesday, October 7, 2008

12

Tuesday, October 7, 2008

Drawing a Line

```
void drawLine-Error1(int x1,x2, int y1,y2)
    float m = float(y2-y1)/(x2-x1)
    int x = x1
    float y = y1
    while (x <= x2)
        setPixel(x,round(y),PIXEL_ON)
        x += 1
        y += m
```


Drawing a Line

void drawLine-Error1(int $\mathrm{x} 1, \mathrm{x} 2$, int $\mathrm{y} 1, \mathrm{y} 2)$
float $m=f l o a t\left(y^{2}-y 1\right) /(x 2-x 1)$
int $x=x 1$
float $y=y 1$
while (x <= x2)
setPixel(x,round(y),PIXEL_ON)
$\mathrm{x}+=1$
$\mathrm{y}+=\mathrm{m}$ $y+=m$

Tuesday, October 7, 2008

Drawing a Line

```
void drawLine-Error1(int x1,x2, int y1,y2)
    float m = float(y2-y1)/(x2-x1)
    int x = x1 Not exact math
    while (x <= x2)
        setPixel(x,round(y),PIXEL_ON)
        x += 1
        y += m
```


Drawing a Line

void drawLine-Error2(int $\mathrm{x} 1, \mathrm{x} 2$, int $\mathrm{y} 1, \mathrm{y} 2)$
float $m=$ float $\left(y^{2}-y 1\right) /(x 2-x 1)$
int $\mathrm{x}=\mathrm{x} 1$
int $y=y 1$
float e $=0.0$
while ($\mathrm{x}<=\mathrm{x} 2$)
setPixel(x,y,PIXEL_ON)
x += 1
e += m
if (e >= 0.5)
$\mathrm{y}^{+=1}$
$\mathrm{e}-=1.0$

Drawing a Line

```
void drawLine-Error2(int x1,x2, int y1,y2)
    float m = float(y2-y1)/(x2-x1)
    int x = xl
    int y = y1
    float e = 0.0
    while (x <= x2)
        setPixel(x,Y,PIXEL_ON)
        x+= 1 No more rounding
    e += m
        if (e >= 0.5)
            y+=1
            e-=1.0

\section*{Drawing a Line}
void drawLine-Error3(int \(\mathrm{x} 1, \mathrm{x} 2\), int \(\mathrm{y} 1, \mathrm{y} 2)\)
int \(\mathrm{x}=\mathrm{x} 1\)
int \(y=y 1\)
float \(e=-0.5\)
while ( x <= x 2 )
setPixel(x,y,PIXEL_ON)
\(\mathrm{x}+=1\)
e += float (y2-y1)/(x2-x1)
if (e >= 0.0)
\(\mathrm{y}^{+=1}\)
\(e-=1.0\)
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

16

\section*{Drawing a Line}
```

void drawLine-Error4(int x1,x2, int y1,y2)
int x = x1
int y = y1
float e = -0.5*(x2-x1) // was -0.5
while (x <= x2)
setPixel(x,y,PIXEL_ON)
x += 1
e += y2-y1
/ was /(x2-x1)
if (e >= 0.0) // no change
y+=1
e-=(x2-x1) // was 1.0

```
\(\qquad\)

\section*{Drawing a Line}
```

void drawLine-Error5(int x1,x2, int y1,y2)
int x = x1
int y = y1
int e = -(x2-x1) // removed *0.5
while (x <= x2)
setPixel(x,y,PIXEL_ON)
x += 1
e += 2*(y2-y1) // added 2*
if (e >= 0.0)
y+=1
e-=2*(x2-x1) // added 2*

```
\(\qquad\)

Tuesday, October 7, 2008

\section*{Drawing a Line}
```

void drawLine-Bresenham(int x1,x2, int y1,y2)
int x = x1
int y = yl
int e = -(x2-x1)
while (x <= x2)
setPixel(x,y,PIXEL_ON)
x += 1
Faster
Not wrong
|m|\leq1
x
e += 2*(y2-y1)
if (e >= 0.0)
y+=1
e-2*(x2-x1)

```

\section*{Drawing Curves}

\[
y=f(x)
\]

Only one value of \(y\) for each value of \(x \ldots\)
\(\qquad\)

Tuesday, October 7, 2008

\section*{Drawing Curves}

\section*{- Parametric curves}
- Both \(x\) and \(y\) are a function of some third parameter
\[
\begin{align*}
& x=f(u) \\
& y=f(u) \\
& \mathbf{x}=\mathbf{f}(u) \\
& u \in\left[u_{0} \ldots u_{1}\right] \tag{21}
\end{align*}
\]


\section*{Drawing Curves}


\section*{Drawing Curves}
- Draw curves by drawing line segments
- Must take care in computing end points for lines
- How long should each line segment be?
\[
\begin{equation*}
\mathbf{x}=\mathbf{f}(u) \quad u \in\left[u_{0} \ldots u_{1}\right] \tag{}
\end{equation*}
\]

\section*{Drawing Curves}

\section*{- Draw curves by drawing line segments}
- Must take care in computing end points for lines
- How long should each line segment be?
- Variable spaced points
\[
\mathbf{x}=\mathbf{f}(u) \quad u \in\left[u_{0} \ldots u_{1}\right]
\]

Tuesday, October 7, 2008

\section*{Drawing Curves}
- Midpoint-test subdivision

\[
\left|\mathbf{f}\left(u_{m i d}\right)-\mathbf{l}(0.5)\right|
\]

\section*{Drawing Curves}
- Midpoint-test subdivision

\[
\left|\mathbf{f}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right|
\]
\(\qquad\)

Tuesday, October 7, 2008

\section*{Drawing Curves}
- Midpoint-test subdivision

\[
\left|\mathbf{f}\left(u_{m i d}\right)-\mathbf{l}(0.5)\right|
\]

\section*{Drawing Curves}
- Midpoint-test subdivision
- Not perfect
- We need more information for a guarantee...

\(\qquad\)

Tuesday, October 7, 2008

Filled Polygons


Filled Polygons


30

Tuesday, October 7, 2008

\section*{Filled Polygons}


32

Tuesday, October 7, 2008

\section*{Filled Polygons}


\section*{Filled Polygons}


Filled Polygons
Treat \((\) scan \(y=\) verte \(x)\) as (scan \(y>\) verte \(x)\)


Tuesday, October 7, 2008

Filled Polygons


\section*{Filled Polygons}
- "Equality Removal" applies to all vertices
- Both \(x\) and \(y\) coordinates

\({ }^{39}\)
39

Filled Polygons
- Final result:


40

Tuesday, October 7, 2008

\section*{Filled Polygons}
- Who does this pixel belong to?


\(\qquad\)

Filled Polygons
- Who does this pixel belong to?



\(\qquad\)

\section*{Optimize for Triangles}
- Spilt triangle into two parts
- Two edges per part
- Y-span is monotonic
- For each row
- Interpolate span
- Interpolate barycentric coordinates


45


Tuesday, October 7, 2008```

