CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

V2008-F-08-I

•

Today

- $\circ \ Windowing \ and \ Viewing \ Transformations$
 - Windows and viewports
 - Orthographic projection
 - Perspective projection

Screen Space

- Monitor has some number of pixels
 - e.g. 1024 x 768
- Some sub-region used for given program
 - You call it a window
 - Let's call it a viewport instead

3

Screen Space

- May not really be a "screen"
 - Image file
 - Printer
 - \circ Other
- Little pixel details
- Sometimes odd
 - Upside down
 - Hexagonal

om	Shirley	textbook.	

Screen Space

- \circ Viewport is somewhere on screen
 - You probably don't care where
 - Window System likely manages this detail
 - Sometimes you care exactly where
- Viewport has a size in pixels
 - Sometimes you care (images, text, etc.)
 - Sometimes you don't (using high-level library)

Screen Space

-

Canonical View Space

• Canonical view region

Canonical View Space

- Canonical view region
 - ∘ **2D**: [-1,-1] to [+1,+1]

From Shirley textbook. (Image coordinates are up-side-down.)

$$\begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Remove minus for right-side-up

9

Canonical View Space

- Canonical view region
 - ∘ **2D**: [-1,-1] to [+1,+1]

From Shirley textbook. (Image coordinates are up-side-down.)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Remove minus for right-side-up

Canonical View Space

- Canonical view region
 - ∘ 2D: [-1,-1] to [+1,+1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

10

11

Canonical View Space World Coordinates Canonical Screen Space (Meters) (Pixels) Note distortion issues...

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 - Orthographic
 - Perspective
 - Nonlinear

12

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 - Orthographic

Perspective

Many special cases in books just one of these two...

Nonlinear

Projection

- \circ Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- \circ Different types of projection
 - Linear
 - Orthographic
 - $\circ \ \ Perspective$
 - Nonlinear

Many special cases in books just one of these two...

Orthographic is special case of perspective...

12

Perspective Projections

Linear Projection

- Projection onto a planar surface
- \circ Projection directions either
 - Converge to a point
 - Are parallel (converge at infinity)

14

15

Linear Projection • A 2D view Perspective Orthographic

Orthographic Projection

- $\circ \ No \ for eshortening$
- $\circ \ \textbf{Parallel lines stay parallel}$
- Poor depth cues

Canonical View Space

- Canonical view region
 - \circ 3D: [-1,-1,-1] to [+1,+1,+1]
- \circ Assume looking down -Z axis
 - Recall that "Z is in your face"

20

Orthographic Projection

 \circ Convert arbitrary view volume to canonical

Orthographic Projection View vector Up vector Far,bottom,left Center Right = view X up near,top,right Origin *Assume up is perpendicular to view.

22

Orthographic Projection

 \circ Step 1: translate center to origin

Orthographic Projection

• Step I: translate center to origin

 \circ Step 2: rotate view to -Z and up to +Y

24

Orthographic Projection

• Step I: translate center to origin

 \circ Step 2: rotate view to -Z and up to +Y

• Step 3: center view volume

Orthographic Projection

• Step I: translate center to origin

 \circ Step 2: rotate view to -Z and up to +Y

• Step 3: center view volume

• Step 4: scale to canonical size

26

Orthographic Projection

• Step I: translate center to origin

 \circ Step 2: rotate view to -Z and up to +Y

• Step 3: center view volume

• Step 4: scale to canonical size

$$\boldsymbol{M} = \boldsymbol{S} \cdot \boldsymbol{T}_2 \cdot \boldsymbol{R} \cdot \boldsymbol{T}_1$$

Orthographic Projection

- Step I: translate center to origin
- \circ Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

27

Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- \circ **Z** ordering preserved (where we care)

Pinhole a.k.a center of projection

29

Perspective Projection

Foreshortening: distant objects appear smaller

- $\circ \ Vanishing \ points$
 - Depend on the scene
 - Not intrinsic to camera

"One point perspective"

31

Perspective Projection

- $\circ \ Vanishing \ points$
 - Depend on the scene
 - Nor intrinsic to camera

"Two point perspective"

- $\circ \ Vanishing \ points$
 - Depend on the scene
 - Not intrinsic to camera

33

Perspective Projection

35

Perspective Projection

• Step 1:Translate center to origin

• Step 1:Translate center to origin

 \circ Step 2: Rotate view to -Z, up to +Y

37

Perspective Projection

• Step I:Translate center to origin

 \circ Step 2: Rotate view to -Z, up to +Y

• Step 3: Shear center-line to -Z axis

- Step I:Translate center to origin
- \circ Step 2: Rotate view to -Z, up to +Y
- ∘ Step 3: Shear center-line to -Z axis
- Step 4: Perspective

39

Perspective Projection

- Step I:Translate center to origin
- \circ Step 2: Rotate view to -Z, up to +Y
- ∘ Step 3: Shear center-line to -Z axis
- Step 4: Perspective

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0 \end{bmatrix}$$

• Step 4: Perspective

- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z=-\infty$ goto z=-(i+f)
- $\circ x$ and y values divided by -z/i
- Straight lines stay straight
- \circ Depth ordering preserved in [-i,-f]
- Movement along lines distorted

40

Perspective Projection

• Step 4: Perspective

- \circ Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z=-\infty$ goto z=-(i+f)
- $\circ x$ and y values divided by -z/i
- Straight lines stay straight
- \circ Depth ordering preserved in [-i,-f]
- Movement along lines distorted

[1	0	0	0]
0	1	0	0
0	0	$\frac{i+f}{i}$	f
0	0	$\frac{-1}{i}$	0

Perspective Projection

- Step I:Translate center to orange
- \circ Step 2: Rotate view to -Z, up to +Y
- ∘ Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

54

Perspective Projection

- There are other ways to set up the projection matrix
 - \circ View plane at z=0 zero
 - Looking down another axis
 - ∘ *etc...*
- Functionally equivalent

Vanishing Points

• Consider a ray:

$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$

56

Vanishing Points

- \circ Ignore \boldsymbol{Z} part of matrix
- ${}_{^{\circ}}\,\boldsymbol{X}$ and \boldsymbol{Y} will give location in image plane
- \circ Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x^2 \\ y \\ z \end{bmatrix}$$

Vanishing Points

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix}$$

58

Vanishing Points

 \circ Assume $d_z = -1$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

Vanishing Points

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

- \circ All lines in direction d converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- \circ Lines parallel to image plane ($d_z = 0$) vanish at infinity

What's a horizon?

60

Perspective Tricks

Right Looks Wrong (Sometimes)

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

62

Right Looks Wrong (Sometimes)

From WIRED Magazine

Strangeness

The Ambassadors by Hans Holbein the Younge

64

Ray Picking

 \circ Pick object by picking point on screen

 \circ Compute ray from pixel coordinates.

Ray Picking

• Transform from World to Screen is:

$$\begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix} = \mathbf{M} \begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix}$$

• Inverse:

$$\begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix}$$

• What **Z** value?

66

Ray Picking

• Recall that:

Depends on screen details, YMMV General idea should translate...

- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f

$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$

$$\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)$$

=	$[s_x, s_y, -i]$
\	$\mathbf{b}_{s} = [s_{x}, s_{y}, -f]$

- Recall depth distortion from perspective
 - Interpolating in screen space different than in world

68

Depth Distortion

Half way in screen space

We know the S_i , P_i , and b_i , but not the a_i .

70

Depth Distortion

72

73

Depth Distortion

74

Depth Distortion

Linear equations in the a_i .

$$\left(\sum_j h_j a_j\right) b_i/h_i - a_i = 0 \quad \forall i$$

Not invertible so add some extra constraints.

$$\sum_{i} a_i = \sum_{i} b_i = 1$$

76

Depth Distortion

For a line:

$$a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$$

For a triangle:
$$a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$$

Obvious Permutations for other coefficients.