CS-184: Computer Graphics

Lecture \#8: Projection

Prof. James O'Brien University of California, Berkeley
\qquad

Today

- Windowing and Viewing Transformations
- Windows and viewports
- Orthographic projection
- Perspective projection
\qquad

Screen Space

- Monitor has some number of pixels
- e.g. 1024×768
- Some sub-region used for given program
- You call it a window
- Let's call it a viewport instead

Screen Space

- May not really be a "screen"
- Image file
- Printer
- Other
- Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

Screen Space

- Viewport is somewhere on screen
- You probably don't care where
- Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
- Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library)

\qquad

Screen Space

$0,0 \quad u=0.35=(i+0.5) / n x$

Canonical View Space

- Canonical view region

- 2D: $[-1,-1]$ to $[+1,+1]$

,-1

Canonical View Space

$$
\begin{aligned}
& \circ \text { Canonical view region } \\
& \text { ○ 2D: }[-1,-1] \text { to }[+1,+1] \\
& {\left[\begin{array}{l}
i \\
j \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]}
\end{aligned}
$$

Canonical View Space

- Canonical view region

- 2D: $[-1,-1]$ to $[+1,+1]$

From Shirley textbook.
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\ 0 & \frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Remove minus for right-side-up

Canonical View Space

- Canonical view region
- 2D: $[-1,-1]$ to $[+1,+1]$
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.

Canonical View Space

World Coordinates (Meters)

Canonical

Screen Space (Pixels)

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
- Orthographic
- Perspective
- Nonlinear

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear

- Nonlinear
\qquad

Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
- Linear
\(\left.\begin{array}{l}- Orthographic

\circ Perspective\end{array}\right\}\)| Many special cases in books just |
| :--- |
| one of these two... |
| Orthographic is special case of |
| Nonlinear | | Perspective... |
| :--- |

Perspective Projections

Linear Projection

- Projection onto a planar surface
- Projection directions either
- Converge to a point
- Are parallel (converge at infinity)

\qquad

18

Orthographic Projection

- No foreshortening
- Parallel lines stay parallel
- Poor depth cues

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $工$
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

Canonical View Space

- Canonical view region
- 3D: $[-1,-1,-1]$ to $[+1,+1,+1]$
- Assume looking down -Z axis
- Recall that " Z is in your face"

Orthographic Projection

- Convert arbitrary view volume to canonical

\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow

Orthographic Projection

Origin *Assume up is perpendicular to view.

Orthographic Projection

- Step I: translate center to origin

\qquad

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $-\mathbf{Z}$ and up to $+\mathbf{Y}$

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $-\mathbf{Z}$ and up to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to +Y
- Step 3: center view volume
- Step 4: scale to canonical size

$$
\mathbf{M}=\mathbf{S} \cdot \mathbf{T}_{2} \cdot \mathbf{R} \cdot \mathbf{T}_{1}
$$

\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $-\mathbf{Z}$ and up to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size

$$
\begin{aligned}
& \mathbf{M}=\underline{\mathbf{S} \cdot \mathbf{T}_{2} \cdot \mathbf{R} \cdot \mathbf{T}_{1}} \\
& \mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{v}
\end{aligned}
$$

Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- \mathbf{Z} ordering preserved (where we care)

Perspective Projection

Pinhole a.k.a center of projection

Perspective Projection

Foreshortening: distant objects appear smaller
\qquad

Perspective Projection

- Vanishing points

- Depend on the scene
- Not intrinsic to camera

"One point perspective"
31

Perspective Projection

- Vanishing points

- Depend on the scene
- Nor intrinsic to camera

"Two point perspective"

Perspective Projection

- Vanishing points

- Depend on the scene
- Not intrinsic to camera

"Three point perspective"
33

Perspective Projection

\qquad

Perspective Projection

Perspective Projection

- Step I:Translate center to origin

$$
-\mathrm{Z}
$$

\qquad

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to $-\mathbf{Z}$ axis

\qquad
\longrightarrow

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to $\mathbf{+ Y}$
- Step 3: Shear center-line to - \mathbf{Z} axis
- Step 4: Perspective

Perspective Projection

- Step I:Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
- Step 3: Shear center-line to $-\mathbf{Z}$ axis
- Step 4: Perspective

\qquad
\longrightarrow
\qquad
\qquad
\longrightarrow

Perspective Projection

- Step 4: Perspective

- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z= \pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$

- x and y values divided by $-z / i$
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

Perspective Projection

- Step 4: Perspective

- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z= \pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$

- x and y values divided by $-z / i$
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0\end{array}\right]$
.
\qquad

Perspective Projection

Perspective Projection

Perspective Projection

${ }^{42}$
42

Perspective Projection

都
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad

\square

\square
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad

Perspective Projection

${ }^{52}$
52

Perspective Projection

- Step I:Translate center to orange
- Step 2: Rotate view to -Z, up to $+\mathbf{Y}$
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

\qquad
\longrightarrow
\square
\square
\qquad \longrightarrow
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow

Perspective Projection

- Step I:Translate center to orange - Step 2: Rotate view to -Z, up to +Y	$\} \mathbf{M}_{v}$
Step 3: Shear center-line to -Z axis - Step 4: Perspective	$\} \mathbf{M}_{p}$
- Step 5: center view volume - Step 6: scale to canonical size	$\} \mathbf{M}_{o}$
$\mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{p} \cdot \mathbf{M}_{v}$	

54

Perspective Projection

- There are other ways to set up the projection matrix
- View plane at $z=0$ zero
- Looking down another axis
- etc...
- Functionally equivalent
\qquad
$工$
-

Vanishing Points

- Consider a ray:

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

Vanishing Points

- Ignore \mathbf{Z} part of matrix
- \mathbf{X} and \mathbf{Y} will give location in image plane
- Assume image plane at $z=-i$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\text { whatever } \\
0 & 0 & -1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
.

Vanishing Points

$$
\begin{gathered}
{\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z
\end{array}\right]} \\
{\left[\begin{array}{l}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vanishing Points

- Assume $d_{z}=-1$

$$
\begin{gathered}
{\left[\begin{array}{c}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right]=\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]=\left[\begin{array}{l}
\frac{p_{x}+t d_{x}}{-p_{z}+t} \\
\frac{p_{y}+t d_{y}}{-p_{z}+t}
\end{array}\right]} \\
\operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
\end{gathered}
$$

Vanishing Points

$$
\operatorname{Lim}_{t \rightarrow \pm \infty}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

- All lines in direction \mathbf{d} converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane $\left(d_{z}=0\right)$ vanish at infinity

What's a horizon?
\qquad
.

\qquad

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

From Correction of Geometric Perceptual Distorions in Pictures, Zorin and Bar SIGGRAPH 1995

Right Looks Wrong (Sometimes)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
From Wired Magazine

Strangeness

The Ambassadors
by Hans Solbein the The Ambassadors
by Hans Holbein the Younger

Ray Picking

- Pick object by picking point on screen

- Compute ray from pixel coordinates.

Ray Picking

- Transform from World to Screen is:

$$
\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{z} \\
I_{w}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
W_{x} \\
W_{y} \\
W_{z} \\
W_{w}
\end{array}\right]
$$

- Inverse:

$$
\left[\begin{array}{l}
W_{x} \\
W_{y} \\
W_{z} \\
W_{w}
\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{l}
I_{x} \\
I_{y} \\
I_{z} \\
I_{w}
\end{array}\right]
$$

- What \mathbf{Z} value?

66

Ray Picking

- Recall that:

Depends on screen details,YMMV General idea should translate...

- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$

$$
\begin{aligned}
\mathbf{r}(t) & =\mathbf{p}+t \mathbf{d} \\
\mathbf{r}(t) & =\mathbf{a}_{w}+t\left(\mathbf{b}_{w}-\mathbf{a}_{w}\right)
\end{aligned}
$$

$$
\mathbf{a}_{s}=\left[s_{x}, s_{y},-i\right]
$$

$$
\mathbf{b}_{s}=\left[s_{x}, s_{y},-f\right]
$$

Depth Distortion

- Recall depth distortion from perspective
- Interpolating in screen space different than in world
- Ok, for shading (mostly) Half way in world space
- Bad for texture

Depth Distortion

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Depth Distortion

We know the S_{i}, P_{i}, and b_{i}, but not the a_{i}.

Depth Distortion

Depth Distortion

Depth Distortion

74

Depth Distortion

Depth Distortion

Linear equations in the $a_{i} . \quad\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i}-a_{i}=0 \quad \forall i$
Not invertible so add some extra constraints.

$$
\begin{equation*}
\sum_{i} a_{i}=\sum_{i} b_{i}=1 \tag{}
\end{equation*}
$$

76

Depth Distortion

For a line: $\quad a_{1}=h_{2} b_{i} /\left(b_{1} h_{2}+h_{1} b_{2}\right)$
For a triangle: $a_{1}=h_{2} h_{3} b_{1} /\left(h_{2} h_{3} b_{1}+h_{1} h_{3} b_{2}+h_{1} h_{2} b_{3}\right)$
Obvious Permutations for other coefficients.

