CS-I84: Computer Graphics

Lecture \#6: Raytracing

Prof. James O'Brien
University of California, Berkeley

Today

- Raytracing
- Shadows and direct lighting
- Reflection and refraction
- Antialiasing, motion blur, soft shadows, and depth of field
- Intersection Tests
- Ray-primitive

Raytracing Assignment

Light in an Environment

Lady writing a Letter with her Maid National Gallery of Ireland
Johannes Vermeer, 1670
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Global Illumination Effects

6

Global Illumination Effects

Global Illumination Effects

Caustic Ring
Henrik Jensen (reflection caustic)
\square
\qquad
8

Wednesday, September 17, 2008

9

Early Raytracing

\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wednesday, September 17, 2008

Raytracing

- Scan conversion

- 3D \rightarrow 2D \rightarrow Image
- Based on transforming geometry
- Raytracing
- 3D \rightarrow Image
- Geometric reasoning about light rays

Raytracing

Eye, view plane section, and scene

Wednesday, September 17, 2008

Launch ray from eye through pixel, see what it hits
${ }^{13}$
13

Raytracing

Compute color and fill-in the pixel

Wednesday, September 17, 2008

Raytracing

- Basic tasks
- Build a ray
- Figure out what a ray hits
- Compute shading
\qquad

Building Eye Rays

- Rectilinear image plane build from four points

Wednesday, September 17, 2008

Building Eye Rays

- Nonlinear projections
- Non-planar projection surface
- Variable eye location

Examples

Multiple-Center-of-Projection images P. Rademacher and G. Bishop
SIGGRAPH 1998 PR Rademacher and
SIGGRAPH 1998

Wednesday, September 17, 2008

Shadow Rays

- Detect shadow by rays to light source

21

Shadow Rays

- Test for occluder
- No occluder, shade normally (e.g. Phong model)
- Yes occluder, skip light (don't skip ambient)
- Self shadowing
- Add shadow bias
- Test object ID

Self-shadowing
Correct
\qquad

22

Reflection Rays

- Recursive shading $\quad \mathrm{R}(t)=\mathrm{S}+t \mathrm{~B}$
- Ray bounces off object

$$
t \in[\varepsilon \ldots+\infty)
$$

- Treat bounce rays (mostly) like eye rays
- Shade bounce ray and return color
- Shadow rays
- Recursive reflections
- Add color to shading at original point
- Specular or separate reflection coefficient

\qquad

Refracted Rays

- Transparent materials bend light
- Snell's Law $\frac{n_{i}}{n_{t}}=\frac{\sin \theta_{t}}{\sin \theta_{i}} \quad$ (see clever formula in text...)
$\sin \theta_{t}>1 \leadsto$ Total (internal) reflection

25

Refracted Rays

- Coefficient on transmitted ray depends on θ
- Schlick approximation to Fresnel Equations

$$
\begin{aligned}
& k_{t}\left(\theta_{i}\right)=k_{0}+\left(1-k_{0}\right)\left(1-\cos \theta_{i}\right)^{5} \\
& k_{0}=\left(\frac{n_{t}-1}{n_{t}+1}\right)^{2}
\end{aligned}
$$

- Attenuation
- Wavelength (color) dependant
- Exponential with distance ${ }^{26}$

27

Anti-Aliasing

- Boolean on/off for pixels causes problems
- Consider scan conversion algorithm:

- Compare to casting a ray through each pixel center
- Recall Nyquist Theorem
- Sampling rate \geq twice highest frequency

Anti-Aliasing

- Desired solution of an integral over pixel

"Distributed" Raytracing

- Send multiple rays through each pixel

One Sample

5×5 Grid 5×5 Jittered Grid
\qquad

- Average results together
- Jittering trades aliasing for noise
\qquad
\longrightarrow _
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

"Distributed" Raytracing

- Use multiple rays for reflection and refraction
- At each bounce send out many extra rays
- Quasi-random directions
- Use BRDF (or Phong approximation) for weights
- How many rays?

\qquad

${ }^{33}$
33

16
34

Wednesday, September 17, 2008

36
\qquad

Wednesday, September 17, 2008

36

Soft Shadows

- Distribute shadow rays over light surface

37

Wednesday, September 17, 2008

Motion Blur

- Distribute rays over time

- More when we talk about animation...

Pool Balls

 Tom PorterRenderMan
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wednesday, September 17, 2008

Wednesday, September 17, 2008

Other Lens Effects

Ray -vs- Sphere Test

- Ray equation: $\mathrm{R}(t)=\mathrm{A}+t \mathrm{D}$
- Implicit equation for sphere: $|\mathrm{X}-\mathrm{C}|^{2}-r^{2}=0$
- Combine:

$$
|\mathrm{R}(t)-\mathrm{C}|^{2}-r^{2}=0
$$

$|\mathrm{A}+t \mathrm{D}-\mathrm{C}|^{2}-r^{2}=0$

- Quadratic equation in t

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ray -vs- Sphere Test

\qquad

Ray -vs- Triangle

- Ray equation: $\mathrm{R}(t)=\mathrm{A}+t \mathrm{D}$
- Triangle in barycentric coordinates: $\mathrm{X}(\beta, \gamma)=\mathrm{V}_{1}+\beta\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)+\gamma\left(\mathrm{V}_{3}-\mathrm{V}_{1}\right)$
- Combine:
$\mathrm{V}_{1}+\beta\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)+\gamma\left(\mathrm{V}_{3}-\mathrm{V}_{1}\right)=\mathrm{A}+t \mathrm{D}$
- Solve for β, γ, and t
- 3 equations 3 unknowns
- Beware divide by near-zero
- Check ranges

