CS-184: Computer Graphics

Lecture #6: Raytracing

Prof. James O'Brien University of California, Berkeley

1

Today

- $\circ \ Ray tracing$
 - Shadows and direct lighting
 - Reflection and refraction
 - · Antialiasing, motion blur, soft shadows, and depth of field
- Intersection Tests
 - Ray-primitive

Raytracing Assignment

3

Light in an Environment

Lady writing a Letter with her Maid National Gallery of Ireland, Dublin Johannes Vermeer, 1670

Global Illumination Effects

PCKTWTCH Kevin Odhner POV-Ray

5

Global Illumination Effects

A Philco 6Z4 Vacuum Tube Steve Anger POV-Ray

Global Illumination Effects

Caustic Sphere Henrik Jensen (refraction caustic)

7

Global Illumination Effects

Caustic Ring Henrik Jensen (reflection caustic)

Global Illumination Effects Sphere Flake Henrik Jensen

Early Raytracing

TurnerWhitted

Raytracing

- Scan conversion
 - \circ 3D \rightarrow 2D \rightarrow Image
 - Based on transforming geometry
- $\circ \ Ray tracing$
 - \circ 3D \rightarrow Image
 - Geometric reasoning about light rays

11

Raytracing Fye, view plane section, and scene

Raytracing

- Basic tasks
 - Build a ray
 - $\circ\,$ Figure out what a ray hits
 - Compute shading

15

Building Eye Rays

 \circ Rectilinear image plane build from four points

Building Eye Rays

- $\circ \ Nonlinear \ projections$
 - Non-planar projection surface
 - Variable eye location

17

Examples

Multiple-Center-of-Projection Images P. Rademacher and G. Bishop SIGGRAPH 1998

Examples

Spherical and Cylindrical Projections Ben Kreunen From Big Ben's Panorama Tutorials

19

Building Eye Rays

• Ray equation

$$R(t) = E + t(P - E)$$

$$t \in [1 \ldots + \infty]$$

- \circ Through eye at $\,t=0\,$
- \circ At pixel center at t=1

Shadow Rays

Detect shadow by rays to light source

21

Shadow Rays

- Test for occluder
 - No occluder, shade normally (e.g. Phong model)
 - Yes occluder, skip light (don't skip ambient)
- Self shadowing
 - Add shadow bias
 - Test object ID

Correct

Reflection Rays

Recursive shading

$$\mathbf{R}(t) = \mathbf{S} + t \, \mathbf{B}$$

• Ray bounces off object

$$t \in [\varepsilon \ldots + \infty)$$

- Treat bounce rays (mostly) like eye rays
- Shade bounce ray and return color
 - Shadow rays
 - Recursive reflections
- \circ Add color to shading at original point
 - Specular or separate reflection coefficient

23

Reflection Rays

- Recursion Depth
 - Truncate at fixed number of bounces
 - Multiplier less than J.N.D.

Refracted Rays

- Transparent materials bend light
 - Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ (see clever formula in text...)

 $\sin \theta_t > 1$ Total (internal) reflection

25

Refracted Rays

- \circ Coefficient on transmitted ray depends on θ
 - Schlick approximation to Fresnel Equations

$$k_t(\theta_i) = k_0 + (1 - k_0)(1 - \cos \theta_i)^5$$

$$k_0 = \left(\frac{n_t - 1}{n_t + 1}\right)^2$$

- Attenuation
 - Wavelength (color) dependant
 - Exponential with distance

Anti-Aliasing

- Boolean on/off for pixels causes problems
 - Consider scan conversion algorithm:

- Compare to casting a ray through each pixel center
- Recall Nyquist Theorem
 - Sampling rate ≥ twice highest frequency

Anti-Aliasing

Desired solution of an integral over pixel

29

"Distributed" Raytracing

 \circ Send multiple rays through each pixel

One Sample

5x5 Grid

5x5 Jittered Grid

- Average results together
- Jittering trades aliasing for noise

"Distributed" Raytracing

31

"Distributed" Raytracing

- Use multiple rays for reflection and refraction
 - At each bounce send out many extra rays
 - Quasi-random directions
 - Use BRDF (or Phong approximation) for weights
- How many rays?

Soft Shadows

- \circ Soft shadows result from non-point lights
 - $\circ\,$ Some part of light visible, some other part occluded

Figure from S. Chenney

Soft Shadows Distribute shadow rays over light surface All shadow rays go through By Some shadow rays go through Figure from S. Chenney

Motion Blur

- \circ Distribute rays over \emph{time}
 - More when we talk about animation...

Pool Balls Tom Porter RenderMan

Depth of Field

• Distribute rays over a lens assembly

Kolb, Mitchell, and Hanrahan SIGGRAPH 1995

40

Depth of Field

Jittered rays for DoF

No DoF

Multiple images for DoF

More rays

Even more rays

Other Lens Effects

Kolb, Mitchell, and Hanrahan 42

42

Ray -vs- Sphere Test

- \circ Ray equation: R(t) = A + tD
- \circ Implicit equation for sphere: $|\mathbf{X}-\mathbf{C}|^2-r^2=0$
- Combine:

$$|\mathbf{R}(t) - \mathbf{C}|^2 - r^2 = 0$$

 $|\mathbf{A} + t\mathbf{D} - \mathbf{C}|^2 - r^2 = 0$

 \circ Quadratic equation in t

Ray -vs- Sphere Test

44

Ray -vs- Triangle

- Ray equation: R(t) = A + tD
- Triangle in barycentric coordinates:

$$X(\beta, \gamma) = \dot{V}_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1)$$

• Combine:

$$V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1) = A + t D$$

- \circ Solve for β , γ , and t
 - 3 equations 3 unknowns
 - Beware divide by near-zero
 - Check ranges

