CS-I84: Computer Graphics

Lecture \#5: 3D Transformations and

 Rotations
Today

- Transformations in 3D
- Rotations
- Matrices
- Euler angles
- Exponential maps
- Quaternions

3D Transformations

- Generally, the extension from 2D to 3D is straightforward
- Vectors get longer by one
- Matrices get extra column and row
- SVD still works the same way
- Scale, Translation, and Shear all basically the same
- Rotations get interesting

Translations

$$
\begin{aligned}
\tilde{\mathbf{A}} & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] & \text { For 2D } \\
\tilde{\mathbf{A}} & =\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] & \text { For 3D }
\end{aligned}
$$

4
\qquad

Scales

$$
\begin{array}{rlrl}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] & & \text { For 2D } \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & & \text { (Axis-ar 3D } \\
\text { (Aigned!) }
\end{array}
$$

Shears

$$
\begin{gathered}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
1 & h_{x y} & 0 \\
h_{y x} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
1 & h_{x y} & h_{x z} & 0 \\
h_{y x} & 1 & h_{y z} & 0 \\
h_{z x} & h_{z y} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered} \begin{aligned}
& \text { For 2D } \\
&
\end{aligned}
$$

Monday, September 15, 2008
$\tilde{\text { Shears }} \frac{\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z x} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]}{\left[\begin{array}{ll}\text { Shears } y \text { into } x\end{array}\right.}$

Rotations

- 3D Rotations fundamentally more complex than in 2D
- 2D: amount of rotation
- 3D: amount and axis of rotation

$-v s-$

8

Monday, September 15, 2008

Rotations

- Rotations still orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- Preserve lengths and distance to origin
- 3D rotations DO NOT COMMUTE!
- Right-hand rule
- Unique matrices

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square
\qquad
10

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: looks same as $\tilde{\mathbf{R}}$

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{2}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Axis-aligned 3D Rotations

$$
\begin{array}{ll}
\mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

13

Monday, September 15, 2008

Axis-aligned 3D Rotations

- Also known as "direction-cosine" matrices

$$
\begin{gathered}
\mathbf{R}_{i}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Arbitrary Rotations

- Can be built from axis-aligned matrices:

$$
\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}
$$

- Result due to Euler... hence called Euler Angles
- Easy to store in vector $\mathbf{R}=\operatorname{rot}(x, y, z)$
- But NOT a vector.

\qquad

Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
- Reverse of each other
\qquad
\square
\qquad

Exponential Maps

- Direct representation of arbitrary rotation
- AKA: axis-angle, angular displacement vector
- Rotate θ degrees about some axis
- Encode θ by length of vector

$$
\theta=|\mathbf{r}|
$$

${ }^{18}$

Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}
- Method from text:
I. rotate about x axis to put \mathbf{r} into the $x-y$ plane

2. rotate about z axis align \mathbf{r} with the x axis
3. rotate θ degrees about x axis
4. undo \#2 and then \#I
5. composite together
\qquad

Exponential Maps

Monday, September 15, 2008

Exponential Maps

- Rodriguez Formula

Exponential Maps

22

Exponential Maps

- Building the matrix

$$
\mathbf{x}^{\prime}=\left(\left(\hat{\mathbf{r}} \hat{\mathbf{r}}^{\mathrm{t}}\right)+\sin (\theta)(\hat{\mathbf{r}} \times)-\cos (\theta)(\hat{\mathbf{r}} \times)(\hat{\mathbf{r}} \times)\right) \mathbf{x}
$$

$$
(\hat{\mathbf{r}} \times)=\left[\begin{array}{ccc}
0 & -\hat{r}_{z} & \hat{r}_{y} \\
\hat{r}_{z} & 0 & -\hat{r}_{x} \\
-\hat{r}_{y} & \hat{r}_{x} & 0
\end{array}\right]
$$

Antisymmetric matrix
$(\mathbf{a} \times) \mathbf{b}=\mathbf{a} \times \mathbf{b}$
Easy to verify by expansion
\qquad

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exponential Maps

- Why exponential?
- Recall series expansion of e^{x}

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

\qquad

Exponential Maps

- Why exponential?
- Recall series expansion of e^{x}
- Euler: what happens if you put in $i \theta$ for x

$$
\begin{gathered}
e^{i \theta}=1+\frac{i \theta}{1!}+\frac{-\theta^{2}}{2!}+\frac{-i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots \\
=\left(1+\frac{-\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\frac{\theta}{1!}+\frac{-\theta^{3}}{3!}+\cdots\right) \\
=\cos (\theta)+i \sin (\theta)
\end{gathered}
$$

Exponential Maps

- Why exponential?
$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{(\hat{\mathbf{r}} \times)^{3} \theta^{3}}{3!}+\frac{(\hat{\mathbf{r}} \times)^{4} \theta^{4}}{4!}+\cdots$

But notice that: $(\hat{\mathbf{r}} \times)^{3}=-(\hat{\mathbf{r}} \times)$
$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots$
${ }^{27}$

Exponential Maps

$$
\begin{gathered}
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times)\left(\frac{\theta}{1!}-\frac{\theta^{3}}{3!}+\cdots\right)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}\left(+\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right) \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times) \sin (\theta)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}(1-\cos (\theta))
\end{gathered}
$$

Quaternions

- More popular than exponential maps
- Natural extension of $e^{i \theta}=\cos (\theta)+i \sin (\theta)$
- Due to Hamilton (I843)
- Interesting history
- Involves "hermaphroditic monsters"

Quaternions

- Uber-Complex Numbers

$$
\begin{gathered}
\mathrm{q}=\left(z_{1}, z_{2}, z_{3}, s\right)=(\mathbf{z}, s) \\
\mathrm{q}=i z_{1}+j z_{2}+k z_{3}+s \\
i^{2}=j^{2}=k^{2}=-1 \quad \begin{array}{rl}
i j=k & j i=-k \\
j k=i & k j=-i \\
k i=j & i k=-j
\end{array}
\end{gathered}
$$

\qquad

Quaternions

- Multiplication natural consequence of defn.

$$
\mathrm{q} \cdot \mathrm{p}=\left(\mathbf{z}_{q} s_{p}+\mathbf{z}_{p} s_{q}+\mathbf{z}_{p} \times \mathbf{z}_{q}, s_{p} s_{q}-\mathbf{z}_{p} \cdot \mathbf{z}_{q}\right)
$$

- Conjugate

$$
\mathrm{q}^{*}=(-\mathbf{z}, s)
$$

- Magnitude
$\|\mathrm{q}\|^{2}=\mathbf{z} \cdot \mathbf{z}+s^{2}=\mathrm{q} \cdot \mathrm{q}^{*}$

Quaternions

- Vectors as quaternions

$$
v=(\mathbf{v}, 0)
$$

- Rotations as quaternions

$$
\mathrm{r}=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)
$$

- Rotating a vector

$$
x^{\prime}=r \cdot x \cdot r^{*}<\text { Compare to Exp. Map }
$$

- Composing rotations

$$
r=r_{1} \cdot r_{2}
$$

Quaternions

- No tumbling
- No gimbal-lock
- Orientations are "double unique"
- Surface of a 3-sphere in 4D $\|r\|=1$
- Nice for interpolation

34
\qquad

Monday, September 15, 2008

Rotation Matrices

- Eigen system
- One real eigenvalue
- Real axis is axis of rotation
- Imaginary values are 2D rotation as complex number
- Logarithmic formula

$$
\begin{gathered}
(\hat{\mathbf{r}} \times)=\ln (\mathbf{R})=\frac{\theta}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right) \\
\theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(\mathbf{R})-1}{2}\right)
\end{gathered}
$$

Similar formulae as for exponential...
35

Rotation Matrices

- Consider:

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns are coordinate axes after transformation (true for general matrices)
- Rows are original axes in original system (not true for general matrices)
\qquad
36

Note:

- Rotation stuff in the book is a bit weak... luckily you have these nice slides!

