CS-184: Computer Graphics

Lecture #4: 2D Transformations

Prof. James O'Brien University of California, Berkeley

V2008-F-04-I

Today

- 2D Transformations
 - "Primitive" Operations
 - Scale, Rotate, Shear, Flip, Translate
 - Homogenous Coordinates
 - SVD
 - Start thinking about rotations...

2	2	
	_	

Introduction

• Transformation:

An operation that changes one configuration into another

• For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

3

Some Examples

Original

Uniform Scale

Images from Conan The Destroyer, 1984

-	

Mapping Function

f(x) = x in old image

5

Linear -vs- Nonlinear

Nonlinear (swirl)

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric (flip)

-

Instancing W.C. Escher, from Ghostscript 8.0 Distribution

Instancing

- \circ Reuse geometric descriptions
- Saves memory

Ç

Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

11

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

$$f(x) = a + bx$$
 $g(f) = c + df$

$$g(x) = c + df(x) = c + ad + bdx$$

$$g(x) = a' + b'x$$

Points in Space

- \circ Represent point in space by vector in \mathbb{R}^n
 - Relative to some origin!
 - Relative to some coordinate axes!
- Later we'll add something extra...

13

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- \circ Shear is a composite transformation!

Linear Functions in 2D

$$x' = f(x,y) = c_1 + c_2x + c_3y$$

 $y' = f(x,y) = d_1 + d_2x + d_3y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} M_{xx} M_{xy} \\ M_{yx} M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$$

15

Rotations

$$\mathbf{p'} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{p}$$

Rotate

Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
 - rotate by zero degrees give identity
 - \circ rotations are modulo 360 (or 2π)

17

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\circ \operatorname{Det}(\mathbf{R}) = 1 \neq -1$
- In 2D rotations commute...
 - But in 3D they won't!

Scales

$$\mathbf{p'} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \mathbf{p}$$

Scale

19

Scales

- Diagonal matrices
 - Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Really, axis-aligned scales

Shears

$$\mathbf{p'} = \begin{bmatrix} 1 & H_{yx} \\ H_{xy} & 1 \end{bmatrix} \mathbf{p'}$$

21

Shears

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....

Translation

• This is the not-so-useful way:

Translate

$$\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Note that its not like the others.

23

Arbitrary Matrices

• For everything but translations we have:

$$\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$$

- Soon, translations will be assimilated as well
- What does an arbitrary matrix mean?

Singular Value Decomposition

• For any matrix, A, we can write SVD: $A = QSR^T$

where Q and R are orthonormal and S is diagonal

• Can also write Polar Decomposition $\mathbf{A} = \mathbf{Q}\mathbf{R}\mathbf{S}\mathbf{R}^\mathsf{T}$

where \mathbf{Q} is still orthonormal

not the same Q

25

Decomposing Matrices

- \circ We can force **Q** and **R** to have Det=1 so they are rotations
- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales

Composition

• Matrix multiplication composites matrices p' = BAp

"Apply A to p and then apply B to that result."

$$p' = B(Ap) = (BA)p = Cp$$

- Several translations composted to one
- Translations still left out...

$$p' = B(Ap + t) = BAp + Bt = Cp + u$$

27

Composition

Matrix multiplication composites matrices

$$p' = BAp$$

"Apply A to p and then apply B to that result."

$$\mathbf{p}' = \mathbf{B}(\mathbf{A}\mathbf{p}) = (\mathbf{B}\mathbf{A})\mathbf{p} = \mathbf{C}\mathbf{p}$$

- Several translations composted to one
- Translations still left out...

$$p' = B(Ap + t) = p + Bt = Cp + u$$

Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears

28

Homogeneous Coordiantes

- Move to one higher dimensional space
 - Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Homogeneous Translation

$$\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

$$\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

30

Homogeneous Others

$$\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?

-vs-

32

Rotate About Arb. Point

• Step 1:Translate point to origin

Translate (-C)

Rotate About Arb. Point

- Step 1:Translate point to origin
- Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

34

Rotate About Arb. Point

- Step 1:Translate point to origin
- \circ Step 2: Rotate as desired
- \circ Step 3: Put back where it was

Translate (-C)

Rotate (θ)

Translate (C)

Rotate About Arb. Point

• Step 1:Translate point to origin

• Step 2: Rotate as desired

Step 3: Put back where it was

Translate (-C)

Rotate (θ)

Translate (C)

$$\widetilde{\mathbf{p}}' = (-\mathbf{T})\mathbf{R}\mathbf{T}\widetilde{\mathbf{p}} = \mathbf{A}\widetilde{\mathbf{p}}$$

35

Rotate About Arb. Point

- Step 1:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)

Rotate (θ)

Translate (C)

$$\widetilde{\mathbf{p}}' = (-T)\mathbf{R}\mathbf{T}\widetilde{\mathbf{p}} = \mathbf{A}\widetilde{\mathbf{p}}$$

Don't negate the 1...

Scale About Arb. Axis

Diagonal matrices scale about coordinate axes only:

36

Scale About Arb. Axis

 \circ Step 1:Translate axis to origin

Not axis-aligned

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

38

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4&5: Undo 2 and I (reverse order)

40

Order Matters!

- The order that matrices appear in matters
 - $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \mathbf{A}$
- Some special cases work, but they are special
- But matrices are associative

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

 Think about efficiency when you have many points to transform...

Matrix Inverses

- \circ In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
 - \circ Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)
- Others:
 - Invert matrix
 - Invert SVD matrices

42

Point Vectors / Direction Vectors

- Points in space have a 1 for the "w" coordinate
- \circ What should we have for a b?
 - $\circ w = 0$
 - Directions not the same as positions
 - Difference of positions is a direction
 - Position + direction is a position
 - Direction + direction is a direction
 - Position + position is nonsense

Somethings Require Care

For example normals do not transform normally

$$M(a\times b)\neq (Ma)\times (Mb)$$

$$\boxed{M(Re) \neq R(Me)}$$

44