CS-184: Computer Graphics

Lecture \#4: 2D Transformations

Prof. James O'Brien University of California, Berkeley
\qquad

Today

- 2D Transformations
- "Primitive" Operations
- Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...
\qquad

Introduction

- Transformation:

An operation that changes one configuration into another

- For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.
\qquad

Linear -vs- Nonlinear

Nonlinear (swirl)
Linear (shear)

Geometric -vs- Color Space

Linear Geometric
(flip)

Color Space Transform (edge finding)
\qquad

Instancing

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

$$
\begin{aligned}
& f(x)=a+b x \quad g(f)=c+d f \\
& g(x)=c+d f(x)=c+a d+b d x
\end{aligned}
$$

$$
g(x)=a^{\prime}+b^{\prime} x
$$

\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow
\qquad
$工$ \longrightarrow
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad

Points in Space

- Represent point in space by vector in R^{n}
- Relative to some origin!
- Relative to some coordinate axes!
- Later we'll add something extra...

Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!

Linear Functions in 2D

$$
\begin{gathered}
x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y \\
y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad

Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don't be different...
- Note:
- rotate by zero degrees give identity
- rotations are modulo 360 (or 2π)

Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$
- In 2D rotations commute...
- But in 3D they won't!

19

Scales

- Diagonal matrices

- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (I80 deg. rotation)
- Really, axis-aligned scales
.

\qquad

Shears

$\bigwedge_{\text {Shear }} \quad \mathbf{p}^{\prime}=\left[\begin{array}{cc}1 & H_{y x} \\ H_{x y} & 1\end{array}\right] \mathbf{p}$

Shears

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....

21
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow

Translation

- This is the not-so-useful way:

Translate

Note that its not like the others.

Arbitrary Matrices

- For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

- Soon, translations will be assimilated as well
- What does an arbitrary matrix mean?

Singular Value Decomposition

- For any matrix, A, we can write SVD:

$$
\mathbf{A}=\mathbf{Q S R}^{\top}
$$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition
$\mathbf{A}=\mathbf{Q R S R}^{\boldsymbol{\top}}$
where \mathbf{Q} is still orthonormal

Decomposing Matrices

- We can force \mathbf{Q} and \mathbf{R} to have Det=1 so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales
\qquad
$工$
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A} \mathbf{p}
$$

"Apply A to \mathbf{p} and then apply B to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{B A p}+\mathbf{B} \mathbf{t}=\mathbf{C} \mathbf{p}+\mathbf{u}
$$

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A p}
$$

"Apply A to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{w}+\mathbf{B t}=\mathbf{C p}+\mathbf{u}
$$

\qquad
工.
\qquad
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad

Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways
i.e. 45 deg rotation built from shears

Homogeneous Coordiantes

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$
\mathbf{p}=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \quad \widetilde{\mathbf{p}}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homogeneous Translation

$$
\begin{gathered}
\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}
\end{gathered}
$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$
\widetilde{\mathbf{A}}=\left[\right]
$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

Rotations and scales always about the origin

- How to rotate/scale about another point?
-vs-

Rotate About Arb. Point

- Step I:Translate point to origin

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired

Translate (-C)
Rotate (θ)

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\longrightarrow

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Translate (-C)
Rotate (θ)

Translate (C)
$\widetilde{\mathbf{p}}^{\prime}=(-\mathbf{T}) \mathbf{R T} \widetilde{\mathbf{p}}=\mathbf{A} \widetilde{\mathbf{p}}$

Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

Scale About Arb.Axis

- Diagonal matrices scale about coordinate axes only:

36

Scale About Arb.Axis

- Step I:Translate axis to origin

\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

\qquad

Scale About Arb.Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4\&5: Undo 2 and I (reverse order)

\square 40

Order Matters!

- The order that matrices appear in matters

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B A}
$$

- Some special cases work, but they are special
- But matrices are associative

$$
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})
$$

- Think about efficiency when you have many points to transform...
$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})$
\square
\qquad

Matrix Inverses

- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
- Translation: negate t_{x} and t_{y}
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the " w " coordinate
- What should we have for $\mathbf{a}-\mathbf{b}$?
- $w=0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Somethings Require Care

For example normals do not transform normally

$$
\begin{gathered}
\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq(\mathbf{M a}) \times(\mathbf{M b}) \\
\mathbf{M}(\mathbf{R e}) \neq \mathbf{R}(\mathbf{M e})
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

