CS-184: Computer Graphics

Lecture \#2: Color

Prof. James O'Brien University of California, Berkeley

Today

- Color and Light

What is Light?

- Radiation in a particular frequency range

Spectral Colors

- Light at a single frequency

- Bright and distinct in appearance

Spectral Colors

- Light at a single frequency

- Bright and distinct in appearance

Reproduction only, not a real spectral color!

Other Colors

- Most colors seen are a mix light of several frequencies

Other Colors

- Most colors seen are a mix light of several frequencies

Other Colors

- Most colors seen are a mix light of several frequencies

Image from David Forsych

Perception -vs- Measurement

- You do not "see" the spectrum of light
- Eyes make limited measurements
- Eyes physically adapt to circumstance
- You brain adapts in various ways also
- Weird psychological stuff happens

Everything is Relative

Everything is Relative

| Adapt |
| :---: | :---: |
| |
| |
| |

It's all in your mind...

	XXXXXX	GREEN
XXXXXX	BLUE	GREEN
XXXXXX	YELLOW	BLUE
XXXXXX	PURPLE	YELLOW
XXXXXX	ORANGE	ORANE
XXXXXX	RED	RED
XXXXXX	WHITE	WHITE
XXXXXX	PURPLE	PURPLE
XXXXXX	ORANGE	ORANGE
XXXXXX	BLUE	BLUE
XXXXXX	RED	RED
XXXXXX	GREEN	GREEN
XXXXXX	WHITE	WHITE
XXXXXX	YELLOW	YELLOW
XXXXXX	PURPLE	PURPLE
XXXXXX	RED	RED
XXXXXX	GREEN	GREEN
XXXXXX	BLUE	BLUE

Mach Bands

Mach Bands

Everything's Still Relative

Eyes as Sensors

- The human eye contains cells that sense light - Rods
- No color (sort of)
- Spread over the retina
- More sensitive

- Cones
- Three types of cones
- Each sensitive to different frequency distribution
- Concentrated in fovea (center of the retina)
- Less sensitive

Cones

- Each type of cone responds to different range of frequencies/wavelengths
- Long, medium, short
- Ratio:L10/M40/S1
- Also called by color
- Red, green, blue
- Misleading:
"Red" does not mean your red cones are firing...

Note: Rod response peaks between S\&M

Cones

- Response of a cone is given by a convolution integral :

$$
r(L, S)=\int L(\lambda) \cdot S(\lambda) \mathrm{d} \lambda
$$

Cones

Cones

Response of a cone is given by a convolution integral :

$$
r(L, S)=\int L(\lambda) \cdot S(\lambda) \mathrm{d} \lambda
$$

Rods

- Rods are not uniform across visible spectrum
- Explains why red light is good for night visions

Note the non-uniform
 scaling on axis!

Cones (rpeap)

- Response of a cone is given by a convolution integral:

$$
r(L, S)=\int L(\lambda) \cdot S(\lambda) \mathrm{d} \lambda
$$

- Different light inputs (L) may produce the same response (r) in all three cones
- Metamers: different "colors" that look the same
- Can be quite useful...
- Odd interactions between illumination and surfaces can be odd...

Trichromaticity

- Eye records color by 3 measurements
- We can "fool" it with combination of 3 signals
- Consequence: monitors, printers, etc...
- PS:The cone responses are linear

Additive Color

- Show color on left
- Mix "primaries" on right until they match
- The primaries need not be RGB

Color Matching Functions

- For primaries at 645.2, 526.3, and 444.4 nm
- Note negative region...
\qquad

Additive Mixing

- Given three colors we agree on
- Make generic color with $M=\alpha A+\beta B+\gamma C$
- Negative not realizable
- Color now described by α, β, γ
- If we match on A, B, C
- Example: computer monitor [RGB], paint

Subtractive Mixing

- Given three colors we agree on
- Make generic color with $M=W-(\alpha A+\beta B+\gamma C)$
- Max limited by w
- Color now described by α, β, γ
- If we match on A, B, C
- Example: ink [CMYK]

CIE XYZ

- Imaginary set of color bases
- Match across spectrum with positive values

。 X, Y, Z

- Normalized:
$x=X /(X+Y+Z)$
$y=Y /(X+Y+Z)$

CIE Color Horseshoe Thinggy

Gamuts

Constraints on additive/ subtractive mixing limit the range of color a given device can realize.

Devices may differ.
Matching between devices can be difficult.

Dynamic Range

- Max/min values also limited on devices
- "blackest black"
- "brightest white"

Tone Mapping

"Day for night"
(not the best example, done in Photoshop)

Color Spaces

- RGB color cube

Color Spaces

- RGB color cube
- HSV color cone

Color Spaces

- RGB color cube
- HSV color cone
- CIE

MacAdam Ellipses (10x) Colors in ellipses indistinguishable from center.
\qquad

Color Spaces

- RGB color cube
- HSV color cone
- CIE (x, y)
- CIE (u, v)

Scaled to be closer to circles.

Color Spaces

- RGB color cube
- HSV color cone
- CIE (x, y)
- CIE (u, v)
- CMYK
- Many others...

Color Phenomena

- Light sources seldom shine directly in eye
- Light follows some transport path, i.e.:
- Source
- Air
- Object surface
- Air
- Eye
- Color effected by interactions

Reflection

- Light strikes object
- Some frequencies reflect
- Some adsorbed
- Reflected spectrum is light times surface
- Recall metamers... colours is absorbed.

Transmission

- Light strikes object
- Some frequencies pass
- Some adsorbed (or reflected)

Scattering

- Interactions with small particles in medium
- Long wavelengths ignore

- Short ones scatter
 in air or water are small relative to light in air or water are small relative to lig
wavelength they scatter blue light preferentially.

Interference

- Wave behavior of light
- Cancelation
- Reinforcement
- Wavelength dependent

m m n in m m n n
MNMNA
мunumuns manmun

Iridescence

- Interaction of light with
- Small structures
- Thin transparent surfaces

Iridescence

Fluorescence / Phosphorescence

- Photon come in, knocks up electron
- Electron drops and emits photon at other frequency
- May be some latency
- Radio active decay can also emit visible photons

Fluorescence / Phosphorescence

Black Body Radiation

- Hot objects radiate energy
- Frequency is temperature dependent
- Moderately hot objects get into visible range
- Spectral distribution is given by

$$
E(\lambda) \propto\left(\frac{1}{\lambda^{5}}\right)\left(\frac{1}{\exp (h c / k \lambda T)-1}\right)
$$

- Leads to notion of "color temperature"

