CS-184: Computer Graphics

Lecture \#I: Introduction, Overview, and Image Basics

Prof. James O'Brien University of California, Berkeley

Today

- Introduction and Course Overview
- Assignments \#I and \#2
- Digital Images

The Subject: Computer Graphics

- Computer Graphics:

Using computers to generate and display images

- Issues that arise:
- Modeling
- Rendering
- Animation
- Perception
- Lots of details...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Computer Graphics

- Applications (in other words, why we care)
- Movies
- Video Games
- Simulation
- Analysis
- Design
- Others...

Course Topics

- Image representation and manipulation
- 2D and 3D drawing algorithms
- Object representations
- Rendering
- Animation
- Interaction techniques

People

Prof. James O'Brien

Email: job@eecs.berkeley.edu
Office hours: Fridays 2:00-4:00pm
Office location: 633 Soda Hall
T.A. Niels Joubert

Email: niels@berkeley.edu
Office hours: TBA
Office hours: TBA
Office hours location:TBA
T.A. James Andrews Email: iima@eecs.berkeley.edu
Office hours: TBA
Office hours location:TBA

Contact Information

- Class web site:
- http://inst.eecs.berkeley.edu/~cs I84
- Handouts assignments, etc. will be posted there
- Lecture notes posted there (hopefully) before classes
- News group:
- ucb.class.cs 184
- Not reading newsgroup... bad idea
- Email addresses on previous page...

Computing Resources

- Class accounts handed shortly
- Can also use CS Labs
- Linux
- Windows
- Mac

Text Book

- Fundamentals of Computer Graphics
by Peter Shirley
* Get the current version!
- Also handouts and other supplemental material will be provided
- See other books listed in course information handout

Grading

- Assignments: 40\%
- Mix of written and programing
- Average I or 2 weeks to do them
- Final Project: 20\%
- Presentation: Dec 10, 2:30-6:00pm
- Midterm: 20\%
- Wednesday, October I3, In class
- Final: 20\%
- Thursday, December 18 5:00-8:00pm
- Check now for conflicts!

Prerequisites

- You must know how to program C or C++
- Big final project, several programing assignments
- No hand holding
- Data structures (CS60B)
- Math: linear algebra, calc, trig

Waitlist

- Relax for now... there is lots of space.

Class Participation

- Reasons to participate
- More fun for me and you
- You learn more
- I won't give stupid little annoying quizzes in class
- How to participate
- Ask questions
- Make comments
- Stupid questions/comments
- That's okay

Assignments \#I and \#2

- Assignment \#I
- Setup CSI84 account and let us know who you are
- Get very simple OpenGL program working
- Assignment \#2
- Tests math prerequisites

Academic Honesty

- If you use an external resource cite it clearly!
- Don't do things that would be considered dishonest... if in doubt ask.
- Cheating earns you:
- An 'F' in the class and
- Getting reported to the University
- No exceptions.

Questions?

Images

- Something that represents a pattern of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

\qquad

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based \longrightarrow
- Functional

\qquad

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based) \longrightarrow
- Object based \longrightarrow
- Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based
- Functional

Well, this used to be in an object based representation...

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based

Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
- Sampled (pixel based)
- Object based

Functional

Function \rightarrow Polygons \rightarrow Pixels
Think about making edits...

Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
- 2D array of memory
- Pixels store different things
- Intensity
- RGB color
- Depth

。Others...

- May be mapped to special HW

\qquad

Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
- 2D array of memory
- Pixels store different things
- Intensity (scalar value, e.g. float, int)
- RGB color (vector value)
- Depth
- Others...

- May be mapped to special HW

Discretization

- Real world and "object" representations are continuous.
- Raster images have discrete pixel locations and discrete pixel values

- We will see problems from this soon...

High Dynamic Range Images

High Dynamic Range Images

- Dynamic range of the human eye >> range of standard monitors
- Eye adjusts as we look around

Perception

- The eye does not see intensity values...

Perception

- The eye does not see intensity values...

Perception

- The eye does not see intensity values...

Storing Images

- Digital file formats
- TIFF,JPEG, PNG, GIF, BMP, PPM, etc. ...
- Compression (lossless and lossy)
- Interlaced (e.g. NTSC television)
- Tend to be complex... use libraries
- Mapping to memory

