CS-184: Computer Graphics

Lecture #1: Introduction, Overview, and Image Basics

Prof. James O'Brien University of California, Berkeley

V2008-F-01-1.0

1

Today

- Introduction and Course Overview
- \circ Assignments #1 and #2
- Digital Images

The Subject: Computer Graphics

- Computer Graphics:
 - Using computers to generate and display images
- Issues that arise:
 - Modeling
 - Rendering
 - Animation
 - Perception
 - Lots of details...

3

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

From Star Wars Episode 1, Lucasfilm Ltd.

5

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

From Finding Nemo, Pixar Animation Studios

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

From Halo 2, by Bungie Entertainme

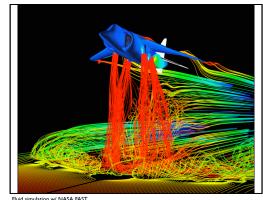
7

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

Image from CAE Inc


9

Computer Graphics

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - o Others...

- Applications (in other words, why we care)
 - Movies
 - Video Games
 - Simulation
 - Analysis
 - Design
 - Others...

11

Course Topics

- Image representation and manipulation
- \circ 2D and 3D drawing algorithms
- Object representations
- Rendering
- Animation
- Interaction techniques

People

Prof. James O'Brien

Email: job@eecs.berkeley.edu
Office hours: Fridays 2:00-4:00pm Office location: 633 Soda Hall

T.A. Niels Joubert

Email: niels@berkeley.edu Office hours: TBA Office hours location:TBA

T.A. James Andrews

Email: jima@eecs.berkeley.edu Office hours: TBA Office hours location:TBA

Send class related email to cs 184@imail.eecs.berkeley.edu

13

Contact Information

- Class web site:
 - http://inst.eecs.berkeley.edu/~cs184
 - Handouts assignments, etc. will be posted there
 - Lecture notes posted there (hopefully) before classes
- News group:
 - ucb.class.cs I 84
 - Not reading newsgroup... bad idea
- Email addresses on previous page...

Computing Resources

- \circ Class accounts handed shortly
- Can also use CS Labs
 - Linux
 - Windows
 - Mac

15

Text Book

- Fundamentals of Computer Graphics by Peter Shirley
 - * Get the current version!
- Also handouts and other supplemental material will be provided
- See other books listed in course information handout

Grading

- Assignments: 40%
 - Mix of written and programing
 - Average I or 2 weeks to do them
- Final Project: 20%
 - Presentation: Dec 10, 2:30-6:00pm
- Midterm: 20%
 - Wednesday, October 13, In class
- Final: 20%
 - Thursday, December 18 5:00-8:00pm
- Check now for conflicts!

17

Prerequisites

- You must know how to program C or C++
 - Big final project, several programing assignments
 - No hand holding
- Data structures (CS60B)
- Math: linear algebra, calc, trig

Waitlist

• Relax for now... there is lots of space.

19

Class Participation

- Reasons to participate
 - More fun for me and you
 - You learn more
 - I won't give stupid little annoying quizzes in class
- How to participate
 - Ask questions
 - Make comments
- Stupid questions/comments
 - ∘ That's okay

)

Assignments #1 and #2

- Assignment #I
 - Setup CS184 account and let us know who you are
 - Get very simple OpenGL program working
- Assignment #2
 - Tests math prerequisites

21

Academic Honesty

- If you use an external resource cite it clearly!
- Don't do things that would be considered dishonest... if in doubt ask.
- Cheating earns you:
 - An 'F' in the class and
 - Getting reported to the University
 - No exceptions.

Questions?

23

Images

- Something that represents a pattern of light that will be perceived by something
- $\circ \ Computer \ representations$
 - Sampled (pixel based)
 - Object based
 - Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

25

25

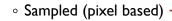
Images

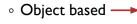
- Something that represents a patten of light that will be perceived by something
- $\circ \ Computer \ representations$
 - o Sampled (pixel based)
 - Object based
 - Functional

Images

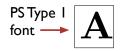
- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

27


Images


- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based -
 - Functional

- Something that represents a patten of light that will be perceived by something
- Computer representations



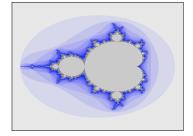


- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based -
 - Functional

Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - o Object based
 - Functional

Well, this used to be in an object based representation...



Okan Arikan

29

Images

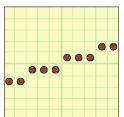
- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional


Mandelbrot Fractal Plot by Vincent Stahl

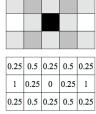
Images

- Something that represents a patten of light that will be perceived by something
- Computer representations
 - Sampled (pixel based)
 - Object based
 - Functional

Function → Polygons → Pixels


Think about making edits...

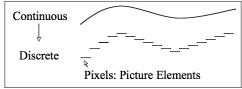
31


Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - Pixels store different things
 - Intensity
 - RGB color
 - Depth
 - Others...
 - May be mapped to special HW

Storing Images

- Object and Function representations basically arbitrary ...later...
- Raster Images
 - 2D array of memory
 - Pixels store different things
 - Intensity (scalar value, e.g. float, int)
 - RGB color (vector value)
 - Depth
 - Others...


Stephen Chenney

May be mapped to special HW

33

Discretization

- Real world and "object" representations are continuous.
- Raster images have discrete pixel locations and discrete pixel values

Stephen Chenney

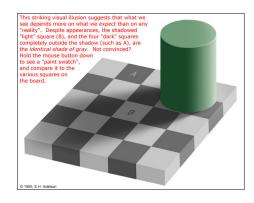
• We will see problems from this soon...

High Dynamic Range Images

35

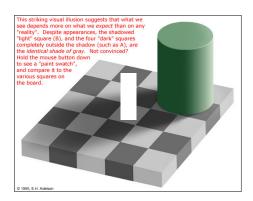
High Dynamic Range Images

- Dynamic range of the human eye >> range of standard monitors
- \circ Eye adjusts as we look around



Paul Debevec and Jitenrda Malik

Perception


• The eye does not see intensity values...

37

Perception

• The eye does not see intensity values...

Perception

• The eye does not see intensity values...

what n or owed sare s), a d?

39

Perception

Storing Images

- Digital file formats
 - $\circ\,$ TIFF, JPEG, PNG, GIF, BMP, PPM, etc. ...
 - Compression (lossless and lossy)
 - Interlaced (e.g. NTSC television)
 - Tend to be complex... use libraries
- Mapping to memory