
For this assignment you will write a program that will convert input from a Bézier surface representation
to a polygonal representation and then display it with OpenGL.

1. This assignment is due as indicted above. Projects turned in late will lose points as de-
scribed in the policies handout. This assignment should be done alone or in pairs. You may
share ideas with other groups, but you may not share code.

2. You may develop on Unix, OS X, or Windows. The platform you use will be the one used to
grade assignments. Keep in mind that there are slight variations due to OS versions, differ-
ent libraries, and other factors, so you should verify that your code runs on the instructional
machines appropriate for you platform choice.

3. We will be using the submit software for submission of this assignment. Instructions for us-
ing the submission software are here. You should include a README file that at the mini-
mum contains the following information:

• Your (and your partner's) name

• The platform your code runs on

• The location of your source code (i.e. indicate who in your group has done the submission,
and on what platform). Only one of the people in your group should submit the actual code.
The other people should only submit the README file.

All files needed to compile your code should appear in the submitted directory. It is your re-
sponsibility to make sure that they will compile and run properly.

• Windows: The grader should be able to recompile your program by simply opening the project
and rebuilding it from scratch.

• Unix and OS X: The grader should be able to recompile your program simply by typing
"make".

You will also turn in some images. These should be named "image-nn.xxx" where nn is a
number (e.g. 01, 02, 03...) and xxx is an appropriate extension (e.g. tif, jpg, ppm, etc.)

4. Once you have your assignment working, you should also update your class web page to
include an “Assignment 5” link to a page with some screenshots taken of your program run-
ning. Make sure that your images demonstrate all the features that you have implemented in
your code. The images on your web page are the same ones that should be submitted with
your code.

5. Optionally, you may earn some extra credit by also posting an animation captured showing
your program in use. While you are responsible for figuring out the most appropriate
method for doing this, the TAs and Professor might have some helpful suggestions. Poor
quality video generated using a video camera pointed at your screen is not adequate. Also,
files that are unreasonably large (i.e. poor choice of compression codec), unplayable on the

CS 184: Foundations of Computer Graphics page 1 of 4
Fall 2008
Prof. James O’Brien

Assignment #5
Point Value: 100 points
Due Date: November 3rd, 11pm

http://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=submit.help
http://inst.eecs.berkeley.edu/cgi-bin/pub.cgi?file=submit.help

grader’s computer (i.e. a non-standard codec), or of very poor quality (i.e. bad selection of
compression parameters) may receive little or no bonus credit.

6. This assignment will be graded in part by looking at your web page to see that you have
posted examples demonstrating all required features. The images on your website should
correspond to the ones you submitted. You may add extra images to your website after the
deadline, but these images should clearly be marked as extra images that were not included
in the submission.
If you work in a group, you should all link to the same web page and the web page should
list your group members.
Grading will include a few points for aesthetics and creativity as demonstrated on your web
page.

7. Do not wait until the last minute to start this assignment. As you may have learned with
your raytracer, this assignment can go very smoothly if you start early and plan ahead. If
you wait until the last minute to start, then you will be a sad, sad puppy.
Check the news group regularly for updates on the assignment or other clarification. We will
assume that anything posted there is henceforth known to all.

8. Submitting an image that was not generated by your code is considered cheating.

9. For this assignment, you will write a program that can convert Bézier patches to polygons
and then display the result. It should:

• Read in a list of patch data from a file.

• Subdivide the patch using either a uniform or adaptive subdivision technique. (You have to
implement both, your program will have a command-line flag to determine which is used.)

• Open a window and use OpenGL to Render the object.

• When "s" is pressed the program will toggle between flat and smooth shading.

• When "w" is pressed the program will toggle between filled and wireframe mode.

• Optional: When "h" is pressed the program will toggle between filled and hidden-line mode.

• When the arrow keys are pressed the object will be rotated.

• When the shift+arrow keys are pressed the object will be translated.

• When launched the initial zoom will show the entire object. Pressing the +/- keys will zoom in/
out.

CS 184: Foundations of Computer Graphics page 2 of 4
Fall 2008
Prof. James O’Brien

Assignment #5
Point Value: 100 points
Due Date: November 3rd, 11pm

10. Your program will take two command line arguments with a third option parameter. These
are: the input file name, the subdivision parameter, and a flag which determines if subdivi-
sion should be adaptive or uniform. An example command would look like:
 % myprogram3 inputfile.bez 0.1 -a

11. The input file contains a list of patches. The subdivision parameter should be interpreted as
the step size in U and V for uniform subdivision, or as an error measure for adaptive subdi-
vision. If the -a is present, then adaptive subdivision should be used, otherwise uniform.
The input file contains the control points for the patches and an output file name. Keep in
mind that the control points are vectors, not scalars! Here are two example input files:

• http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/teapot.bez

• http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/test.bez

12. For uniform subdivision, quadrilateral polygons should be formed by taking subdivision pa-
rameter sized steps in the U and V direction.

13. For adaptive subdivision, the error between the actual surface and the quadrilateral polygon
should be less than subdivision parameter. The error should be distance evaluated at the
midpoints of the polygon edges and the center of each quadrilateral. Techniques to avoid
cracking should be used in the adaptive subdivision code. You may prefer to use a subdivi-
sion technique that yields triangles. If you do then the error should be checked at the cen-
ters of each triangle edge.

14. Optional: The use of OBJ input/output for this assignment is optional and will be worth some
small amount of bonus points. OBJ is a simple 3D surface file format, described at
http://www.royriggs.com/obj.html and elsewhere on the web. In it's simplest form, it is just a
list of vertices followed by a list of faces (potentially just triangles).
If you implement OBJ output then your program should accept an optional command line
argument that comes after the required ones. This is -o and a file name. If the -o option is
given then no OpenGL window should be opened and instead the model should be written to
the specified output file name.
If you implement OBJ input then your code should recognize that the input file has a .obj ex-
tension instead of .bez and directly display the polygons in the OBJ file.

15. Optional: You may use Maya (or some other program) to create additional input files. Maya
can be used to create B-Spline surfaces that can be exported to files. Figure out how to get
data out of Maya and converted to the format expected by your program.

16. Optional: Add the ability to load multiple objects (for example a mix of .bez and .obj files)
and display them each with different transformations. Implement a method for selecting one
of the objects (for example, using a key to cycle through objects) and highlight the selected
object. The arrow keys will now move the selected object. If you implement this option then

CS 184: Foundations of Computer Graphics page 3 of 4
Fall 2008
Prof. James O’Brien

Assignment #5
Point Value: 100 points
Due Date: November 3rd, 11pm

http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/teapot.bez
http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/teapot.bez
http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/test.bez
http://www-inst.cs.berkeley.edu/~cs184/sp08/resources/test.bez
http://www.royriggs.com/obj.html
http://www.royriggs.com/obj.html

you’ll likely want to define some sort of “.scene” file that contains a list objects to load and
transformations for each object. It you really want to have fun, add the ability to write out
these scene files and pass them to your ray-tracer.

17. Questions should be posted to the news group or emailed to cs184.

CS 184: Foundations of Computer Graphics page 4 of 4
Fall 2008
Prof. James O’Brien

Assignment #5
Point Value: 100 points
Due Date: November 3rd, 11pm

