CS-184: Computer Graphics

Lecture #23: Rigid Body Dynamics

Prof. James O’Brien
University of California, Berkeley
Today

- Rigid-body dynamics
- Articulated systems
A Rigid Body

- A solid object that does not deform
 - Consists of infinite number of infinitesimal mass points...
 - ...that share a single RB transformation
 - Rotation + Translation (no shear or scale)
 \[x^W = R \cdot x^L + t \]
 - Rotation and translation vary over time
 - Limit of deformable object as \(k_S \to \infty \)
A Rigid Body

In 2D:
- Translation 2 “directions”
- Rotation 1 “direction”
- 3 DOF Total

In 3D:
- Translation 3 “directions”
- Rotation 3 “direction”
- 6 DOF Total

Translation and rotation are *decoupled*

2D is boring... we’ll stick to 3D from now on...
Translational Motion

Just like a point mass:

\[\dot{p} = v \]
\[\dot{v} = a = \frac{f}{m} \]

Note: Recall discussion on integration...
Rotational Motion

Rotation gets a bit odd, as well see...

Rotational “position” R
Rotation matrix
Exponential map
Quaternions

Rotational velocity ω
Stored as a vector
(Also called angular velocity...)
Measured in radians / second
Rotational Motion

Kinetic energy due to rotation:

“Sum energy (from rotation) over all points in the object”

\[
E = \int_{\Omega} \frac{1}{2} \rho \dot{x} \cdot \dot{x} \, du
\]

\[
E = \int_{\Omega} \frac{1}{2} \rho ([\omega \times \mathbf{x}] \cdot ([\omega \times \mathbf{x}]) \, du
\]
Rotational Motion

momentum

Similar to linear momentum
Can be derived from rotational energy

\[H = \int_{\Omega} \rho \mathbf{x} \times (\omega \times \mathbf{x}) \, du \]

\[H = \left(\int_{\Omega} \cdots \, du \right) \omega \]

\[H = I \omega \]

“Inertia Tensor” not identity matrix...
Inertia Tensor

\[I = \int_{\Omega} \rho \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & z^2 + x^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{bmatrix} du \]

See example for simple shapes at
http://scienceworld.wolfram.com/physics/MomentofInertia.html

Can also be computed from polygon models by transforming volume integral to a surface one.
See paper/code by Brian Mirtich.
Rotational Motion

Conservation or momentum:

\[\dot{H}^W = 0 \]

\[\dot{R} = \omega \times R \]

\[\alpha^W = (RI^L R^T)^{-1}(-\omega^W \times H^W) \]

In other words, things wobble when they rotate.
Rotational Motion

\[\mathbf{H} \]

\[\mathbf{\omega} \]

\[\mathbf{v} \]

Figure is a lie if this really is a sphere...

Take care when integrating rotations, they need to stay rotations.

\[\mathbf{\alpha}^W = (\mathbf{RI}^L \mathbf{R}^T)^{-1} \left((-\mathbf{\omega}^W \times \mathbf{H}^W) + \mathbf{\tau} \right) \]

\[\mathbf{\tau} = \mathbf{f} \times \mathbf{x} \]
Couples

- A force / torque pair is a couple
 - Also a wrench (I think)
- Many couples are equivalent
Constraints

- Simples method is to use spring attachments
 - Basically a penalty method
 - Spring strength required to get good results may be unreasonably high
 - There are ways to cheat in some contexts...
Constraints

- **Articulation constraints**
 - Spring trick is an example of a full coordinate method
 - Better constraint methods exist
 - Reduced coordinate methods use DOFs in kinematic skeleton for simulation
 - Much more complex to explain

- **Collisions**
 - Penalty methods can also be used for collisions
 - Again, better constraint methods exist
Suggested Reading

