CS-184: Computer Graphics

Lecture #17: Forward and Inverse Kinematics

Prof. James O’Brien
University of California, Berkeley
Today

- Forward kinematics
- Inverse kinematics
 - Pin joints
 - Ball joints
 - Prismatic joints
Forward Kinematics

- Articulated skeleton
 - Topology (what’s connected to what)
 - Geometric relations from joints
 - Independent of display geometry
 - Tree structure
 - Loop joints break “tree-ness”
Forward Kinematics

- **Root body**
 - Position set by “global” transformation
- **Root joint**
 - Position
 - Rotation
- **Other bodies relative to root**
 - *Inboard* toward the root
 - *Outboard* away from root
Forward Kinematics

- A joint
 - Joint’s inboard body
 - Joint’s outboard body
Forward Kinematics

- **A body**
 - Body’s inboard joint
 - Body’s outboard joint
 - May have several outboard joints
Forward Kinematics

- A body
 - Body’s inboard joint
 - Body’s outboard joint
 - May have several outboard joints
 - Body’s parent
 - Body’s child
 - May have several children
Forward Kinematics

- **Interior joints**
 - Typically not 6 DOF joints
 - Pin - rotate about one axis
 - Ball - arbitrary rotation
 - Prism - translation along one axis
Forward Kinematics

- Pin Joints
 - Translate inboard joint to local origin
 - Apply rotation about axis
 - Translate origin to location of joint on outboard body
Forward Kinematics

○ Ball Joints
 ○ Translate inboard joint to local origin
 ○ Apply rotation about *arbitrary* axis
 ○ Translate origin to location of joint on outboard body
Forward Kinematics

- **Prismatic Joints**
 - Translate inboard joint to local origin
 - Translate along axis
 - Translate origin to location of joint on outboard body
Forward Kinematics

- Composite transformations up the hierarchy
Inverse Kinematics

- **Given**
 - Root transformation
 - Initial configuration
 - Desired end point location

- **Find**
 - Interior parameter settings
Inverse Kinematics
Inverse Kinematics

- A simple two segment arm in 2D

\[p_z = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \]
\[p_x = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2) \]
Inverse Kinematics

- Direct IK: solve for the parameters

\[\theta_2 = \cos^{-1} \left(\frac{p_z^2 + p_x^2 - l_1^2 - l_2^2}{2l_1l_2} \right) \]

\[\theta_1 = \frac{-p_z l_2 \sin(\theta_2) + p_x (l_1 + l_2 \cos(\theta_2))}{p_x l_2 \sin(\theta_2) + p_z (l_1 + l_2 \cos(\theta_2))} \]
Inverse Kinematics

- Why is the problem hard?
 - Multiple solutions separated in configuration space
Inverse Kinematics

- Why is the problem hard?
 - Multiple solutions connected in configuration space
Inverse Kinematics

- Why is the problem hard?
 - Solutions may not always exist
Inverse Kinematics

Numerical Solution

- Start in some initial configuration
- Define an error metric (e.g. goal pos - current pos)
- Compute Jacobian of error w.r.t. inputs
- Apply Newton’s method (or other procedure)
- Iterate...
Inverse Kinematics

- Recall simple two segment arm:

\[
\begin{align*}
 p_z &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\
 p_x &= l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)
\end{align*}
\]
Inverse Kinematics

- We can write of the derivatives

\[
\frac{\partial p_z}{\partial \theta_1} = -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2)
\]

\[
\frac{\partial p_x}{\partial \theta_1} = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)
\]

\[
\frac{\partial p_z}{\partial \theta_2} = -l_2 \sin(\theta_1 + \theta_2)
\]

\[
\frac{\partial p_x}{\partial \theta_2} = +l_2 \cos(\theta_1 + \theta_2)
\]
Inverse Kinematics

Direction in Config. Space

\[\theta_1 = c_1 \theta_* \]
\[\theta_2 = c_2 \theta_* \]

\[\frac{\partial p_z}{\partial \theta_*} = c_1 \frac{\partial p_z}{\partial \theta_1} + c_2 \frac{\partial p_z}{\partial \theta_2} \]
Inverse Kinematics

The Jacobian (of p w.r.t. θ)

$$J_{ij} = \frac{\partial p_i}{\partial \theta_j}$$

Example for two segment arm

$$J = \begin{bmatrix} \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\ \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \end{bmatrix}$$
Inverse Kinematics

The Jacobian (of p w.r.t. θ)

\[
J = \begin{bmatrix}
\frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\
\frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2}
\end{bmatrix}
\]

\[
\frac{\partial p}{\partial \theta^*_*} = J \cdot \begin{bmatrix}
\frac{\partial \theta_1}{\partial \theta^*_*} \\
\frac{\partial \theta_2}{\partial \theta^*_*}
\end{bmatrix} = J \cdot \begin{bmatrix} c_1 \\
c_2 \end{bmatrix}
\]
Inverse Kinematics

Solving for c_1 and c_2

\[c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \]
\[dp = \begin{bmatrix} dp_z \\ dp_x \end{bmatrix} \]

\[dp = J \cdot c \]
\[c = J^{-1} \cdot dp \]
Inverse Kinematics

Solving for c_1 and c_2

Is the Jacobian invertible?
Inverse Kinematics

- **Problems**
 - Jacobian may (will!) not always be invertible
 - Use pseudo inverse (SVD)
 - Robust iterative method
 - Jacobian is not constant

 \[
 J = \begin{bmatrix}
 \frac{\partial p_z}{\partial \theta_1} & \frac{\partial p_z}{\partial \theta_2} \\
 \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2}
 \end{bmatrix} = J(\theta)
 \]

 - Nonlinear optimization, but problem is (mostly) well behaved
Inverse Kinematics

- More complex systems
 - More complex joints (prism and ball)
 - More links
 - Other criteria (COM or height)
 - Hard constraints (joint limits)
 - Multiple criteria and multiple chains
Inverse Kinematics

- Some issues
 - How to pick from multiple solutions?
 - Robustness when no solutions
 - Contradictory solutions
 - Smooth interpolation
 - Interpolation aware of constraints
Inverse Kinematics

Prism Joints

\[p_z = l_1 \]
\[p_x = d \]

\[p_z = l_1 + d \]
\[p_x = 0 \]
Inverse Kinematics

Ball Joints

\[p = \hat{r} (\hat{r} \cdot \mathbf{x}) + \sin(\|\mathbf{r}\|)(\hat{r} \times \mathbf{x}) - \cos(\|\mathbf{r}\|)(\hat{r} \times (\hat{r} \times \mathbf{x}))) \]
Inverse Kinematics

Ball Joints (moving axis)

\[dp = [dr] \cdot e^r \cdot x = [dr] \cdot p = -[p] \cdot dr \]

That is the Jacobian for this joint

\[\begin{bmatrix} r \end{bmatrix} = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix} \]

\[[r] \cdot x = r \times x \]
Inverse Kinematics

Ball Joints (fixed axis)

\[dp = (d\theta)[\hat{r}] \cdot x = -[x] \cdot \hat{r} d\theta \]

That is the Jacobian for this joint
Inverse Kinematics

- Many links / joints
 - Need a generic method for building Jacobian
Inverse Kinematics

- Can’t just concatenate individual matrices

\[\begin{aligned}
\tilde{J} & = \begin{bmatrix} J_3 & J_{2b} & J_{2a} & J_{1b} \end{bmatrix} \\
\end{aligned} \]

\[\begin{aligned}
d & = \begin{bmatrix} d_3 \\ d_{2b} \\ d_{2a} \\ d_{1b} \end{bmatrix} \\
\end{aligned} \]

\[\begin{aligned}
dp \neq \tilde{J} \cdot dd \\
\end{aligned} \]
Inverse Kinematics

Transformation from body to world

\[X_{0\leftarrow i} = \prod_{j=1}^{i} X_{(j-1)\leftarrow j} = X_{0\leftarrow 1} \cdot X_{1\leftarrow 2} \cdots \]

Rotation from body to world

\[R_{0\leftarrow i} = \prod_{j=1}^{i} R_{(j-1)\leftarrow j} = R_{0\leftarrow 1} \cdot R_{1\leftarrow 2} \cdots \]
Inverse Kinematics

Need to transform Jacobians to common coordinate system (WORLD)

\[J_{i,WORLD} = R_{0\leftarrow(i-1)} \cdot J_i \]
Inverse Kinematics

\[J = \begin{bmatrix}
R_{0\leftarrow 2b} \cdot J_3(\theta_3, p_3) \\
R_{0\leftarrow 2a} \cdot J_{2b}(\theta_{2b}, X_{2b\leftarrow 3} \cdot p_3) \\
R_{0\leftarrow 1} \cdot J_{2a}(\theta_{2a}, X_{2a\leftarrow 3} \cdot p_3) \\
J_1(\theta_1, X_{1\leftarrow 3} \cdot p_3)
\end{bmatrix}^T \]

\[d = \begin{bmatrix}
d_3 \\
d_{2b} \\
d_{2a} \\
d_{1b}
\end{bmatrix} \]

Note: Each row in the above should be transposed....

\[dp = J \cdot dd \]
Suggested Reading

- Advanced Animation and Rendering Techniques by Watt and Watt
 - Chapters 15 and 16