CS 184 - Computer Graphics

Lecture # 10: Scan Conversion

Today

• Line Drawing
• Triangle Rasterization
Line Drawing

- Given two end points \((x_1, y_1)\) and \((x_2, y_2)\)
 - Draw reasonable approximation of the line
 - Often limits to integer coordinate

```
 (x_2, y_2)
 /
 / |
 /  |
 /   |
 /    |
/      |
(x_1, y_1)
```

Implicit Line Equation

- \((x, y)\) on the line \((x_1, y_1)\)--\((x_2, y_2)\) if:

\[
\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1)
\]

\[
(x_2 - x_1)y - x_2y_1 - x_1y_1 = (y_2 - y_1)x - x_1y_2 + x_1y_1
\]

\[
f(x, y) = (x_2 - x_1)y + (y_2 - y_1)x + x_1y_2 - x_2y_1 = 0
\]
Implicit Line Equation

- Interpretation of $f(x,y)$

 $$f(x,y) = (x_2 - x_1)y + (y_1 - y_2)x + x_1y_2 - x_2y_1$$

 - Scaled signed distance from the line

 $$f(x, y) = Ax + By - C = \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - C$$

 - $A = y_1 - y_2$
 - $B = x_2 - x_1$
 - $C = x_2y_1 - x_1y_2$

 - Will be signed distance if $\begin{bmatrix} A \\ B \end{bmatrix}$ is normalized

Drawing a line

- Basically, it’s easy .. but for the details
- Lines are a basic primitive that needs to be done well...
Drawing a line

• Basically, it’s easy .. but for the details
• Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,” by Grabli, Durand, Turquin, Sillion

Drawing Line (Implicit EQ)

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

• Assume 0 < m <= 1
 – For other range of m, need modification
 – More “run” than “rise”
 • Draw 1 pixel per integer x between \(x_1 \) and \(x_2 \)
Drawing a line

• See line drawing slides

Triangle Rasterization

• A triangle is defined by 2D points, \(a, b, c\)
 – Defines non-orthogonal coordinate system
Barycentric Coordinate

- Points on triangle satisfy equation

\[p = a + \beta(b - a) + \gamma(c - a) \]

\(\beta, \gamma \in [0,1] \) and \(\beta + \gamma \leq 1 \)

Barycentric Coordinate

- Equivalently,

\[p = \alpha a + \beta b + \gamma c \]

\(\alpha, \beta, \gamma \in [0,1] \)

\(\alpha = 1 - \beta - \gamma \)
Barycentric Coordinate

• Geometric Interpretation
 – Scaled sign distance
 • 1 at corresponding vertex
 • 0 on opposite edge

\[\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \]

Barycentric Coordinate

• Geometric Interpretation
 – Ratio of area
 • Eg. \(\beta = \frac{\text{Area of } \triangle apc}{\text{Area of } \triangle abc} \)
 • 1 at corresponding vertex
 • 0 on opposite edge

\[\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \]
Barycentric Coordinate

• Given a point P, how to find α, β, γ?
 – Solving linear system
 \[
 \begin{bmatrix}
 x_b - x_a & x_c - x_a \\
 y_b - y_a & y_c - y_a
 \end{bmatrix}
 \begin{bmatrix}
 \beta \\
 \gamma
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_p - x_a \\
 y_p - y_a
 \end{bmatrix}
 \]
 – Cramer’s Rule
 \[
 \beta = \frac{\begin{vmatrix}
 x_b - x_a & x_c - x_a \\
 y_b - y_a & y_c - y_a
 \end{vmatrix}}{\begin{vmatrix}
 x_b - x_a & x_a - x_c \\
 y_b - y_a & y_a - y_c
 \end{vmatrix}}, \quad \gamma = \frac{\begin{vmatrix}
 x_b - x_a & x_a - x_c \\
 y_b - y_a & y_a - y_c
 \end{vmatrix}}{\begin{vmatrix}
 x_b - x_a & x_c - x_a \\
 y_b - y_a & y_c - y_a
 \end{vmatrix}}
 \]
 \[
 \alpha = 1 - \beta - \gamma
 \]

Barycentric Coordinate

• Given a point P, how to find α, β, γ?
 – Use the geometric interpretation
 • Let \(f_{ac}(x, y) \) be the implicit equation for line ac
 \[
 \beta(x, y) \propto f_{ac}(x, y)
 \]
 \[
 \beta(x_b, y_b) = 1
 \]
 \[
 \beta(x, y) = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}
 \]
 • Can do similar reasoning for α, γ
Barycentric Coordinate

• Can be used for Gouraud Shading

\[c = \alpha c_a + \beta c_b + \gamma c_c \]

• Other interpolations
 – Phong Shading
 – Texture Mapping

Triangle Rasterization

• Assume Gouraud shading

For all x do
 For all y do
 Compute \((\alpha, \beta, \gamma)\) for \((x,y)\)
 If (all \(\alpha, \beta, \gamma \in [0,1]\))
 \[c = \alpha c_a + \beta c_b + \gamma c_c \]
 DrawPixel\((x,y,c)\)
Triangle Rasterization

- Improvement

 \[\begin{align*}
 x_{\text{min}} &= \text{floor}(x_i) \\
 x_{\text{max}} &= \text{ceiling}(x_i) \\
 y_{\text{min}} &= \text{floor}(y_i) \\
 y_{\text{max}} &= \text{ceiling}(y_i)
 \end{align*} \]

 For \(y = y_{\text{min}} \) to \(y_{\text{max}} \) do

 For \(x = x_{\text{min}} \) to \(x_{\text{max}} \) do

 \[\begin{align*}
 \beta &= \frac{f_{ac}(x,y)}{f_{ac}(x_b,y_b)} \\
 \gamma &= \frac{f_{ab}(x,y)}{f_{ab}(x_c,y_c)} \\
 \alpha &= 1 - \beta - \gamma
 \end{align*} \]

 If \((\alpha \geq 0 \text{ and } \beta \geq 0 \text{ and } \gamma \geq 0)\) then

 \[c = \alpha c_a + \beta c_b + \gamma c_c \]

 DrawPixel(x,y,c)

Triangle Rasterization

- Issues

 - Pixels on triangles edges

 - Need to draw only once

 - Still not very fast

 - Loop through many pixels not in the triangle
Triangle Rasterization

• Dealing with pixels on triangle edges
 – Two adjacent triangles sharing an edge
 • No Draw - Hole
 • Draw twice - Incorrect transparency
 – Use an off screen point to help with this
 • Draw pixel only if the off screen point is on the same side of the edge as the other vertex

\((-1,-1)\) - Off screen point

Triangle Rasterization

• Dealing with pixels on triangle edges

\[
\begin{align*}
x_{\min} &= \text{floor}(x_i) & x_{\max} &= \text{ceiling}(x_i) \\
y_{\min} &= \text{floor}(y_i) & y_{\max} &= \text{ceiling}(y_i) \\
f_{abc} &= f_{bc}(x_a, y_a)/f_{bc}(-1,-1) \\
f_{bca} &= f_{ca}(x_b, y_b)/f_{ca}(-1,-1) \\
f_{bac} &= f_{ab}(x_c, y_c)/f_{ab}(-1,-1) \\
\end{align*}
\]

For \(y = y_{\min}\) to \(y_{\max}\) do
 For \(x = x_{\min}\) to \(x_{\max}\) do
 \[
 \begin{align*}
 \beta &= f_{ac}(x, y)/f_{ac}(x_b, y_b) \\
 \gamma &= f_{ab}(x, y)/f_{ab}(x_c, y_c) \\
 \alpha &= 1 - \beta - \gamma \\
 \end{align*}
 \]
 If \((\alpha >= 0 \text{ and } \beta >= 0 \text{ and } \gamma >= 0)\) then
 if \((\alpha > 0 \text{ or } f_{abc} > 0)\) and \((\beta > 0 \text{ or } f_{bca} > 0)\) and \((\gamma > 0 \text{ or } f_{bac} > 0)\) then
 DrawPixel\((x, y, c)\)
Triangle Rasterization

• Fast Algorithm
 – Split triangle into 2 pieces
 • Each piece involves only 2 edges
 – Start with top 2 edges
 • For each y,
 – Compute span
 – ceil for min, floor for max
 – Draw horizontal line
 – Linearly interpolate barycoord
 – Until an edge runs out
 • If not done yet,
 – Continue with another edge