
U.C. Berkeley — CS170: Algorithms Handout LN-11-29
Christos Papadimitriou & Luca Trevisan November 29, 2016

Some notes on streaming algorithms – continued

Today we complete our quick review of streaming algorithms. We show how to
approximate F2, how to generate pseudo-random functions that have a compact rep-
resentation. This will show that, for every fixed approximation parameter ε > 0, we
can solve the heavy hitters in O((log n) · (log n + log |Σ|)) space, number of distinct
elements in O(log n+ log |Σ|) space and F2 is O(log n+ log |Σ|) space.

We will then prove memory lower bounds for streaming algorithms that are deter-
ministic and exact.

1 Approximating F2

If we have a stream x1, . . . , xn and fa is the number of times a appears in the stream,
then we define the F2 parameter of the stream as

F2 :=
∑
a∈Σ

f 2
a

As we discussed last week, this parameter is always between n and n2 and it measures
how “diverse” is the stream: roughly speaking, low values correspond to a stream in
which there are many elements occurring a small number of times and high values
correspond to streams in which few elements occur a large number of times.

The basic idea of the algorithm is to pick a random function h : Σ→ {−1,+1} and,
given a stream x1, . . . , xn, compute

Z :=
∑
i

h(xi)

which we can do easily by initializing Z := 0 and then adding to Z the hash of the
current stream element at every step.

Our estimate for the sum-of-square parameter is Z2.

Note that

1

Z =
∑
a∈Σ

fah(a)

and so

EZ2 = E

(∑
a∈Σ

fah(a)

)
·

(∑
b∈Σ

fbh(b)

)
=
∑
a

f 2
a

∑
a

Eh(a)2 +
∑
a,b 6=a

fafb Eh(a)h(b)

=
∑
a

f 2
a

where we use the fact that Eh(a) = 0 and Eh(a)2 = 1 for every a. So the value Z2

is, in expectation, precisely the F2 value that we are interested in.

The cancellations in the above calculation may seem a bit magical, so let us try
to gain some intuition as to why Z2 should be, in expectation, the sum-of-squares
parameter F2. Let us first look at a couple of examples as sanity checks: suppose all
the elements in the stream are identical; then Z is equal to +n with probability 1

2

and it is equal to −n with probability 1
2
, so Z2 is always equal to n2, which is F2. If

the stream contains two distinct elements, each occurring n/2 times, then Z = 0 with
probability 1

2
and Z = ±n with probability 1

2
, and EZ2 = 1

2
n2, which is the same as

F2 = 2 ·
(
n
2

)2
.

Another way to arrive at the EZ2 = F2 result is to observe that EZ = 0, so EZ2 =
VarZ. This means that we can use the rules to compute variance and see that

VarZ = Var
∑
a

fah(a) =
∑
a

Varfah(a) =
∑
a

f 2
aVarh(a) =

∑
a

f 2
a

Just the fact that our estimator is, on average, equal to the quantity that we want to
estimate does not guarantee that we get a good approximation with high probability.
The latter is true only we have a small variance. The variance of the random variable
Z2 is

VarZ2 := E(Z2 − (EZ2))2 = EZ4 − (EZ2)2

We can prove (try to verify it) that

EZ4 =
∑
a

f 4
a + 3

∑
a

∑
b6=a

f 2
af

2
b

and
(EZ2)2 =

∑
a

f 4
a +

∑
a

∑
b6=a

f 2
af

2
b

2

so
VarZ2 = 2

∑
a

∑
b 6=a

f 2
af

2
b < 2F 2

2

So the average of Z2 is F2, and the standard deviation is at most
√

2F2. Unfor-
tunately this is not yet enough, using the tools that we know (Markov’s inequality
and Chebyshev’s inequality), to argue that we get a constant-factor approximation
with good probability. Indeed, in the example in which the stream has two distinct
elements each occurring n/2 times, Z2 is 0 with probability .5, so there is a 50%
probability of getting an answer that gives no information about F2.

However, consider the following variant of the algorithm: we pick independently 100
random functions hi : Σ → {−1, 1}, for i = 1, . . . , 100, and, for i = 1, . . . , 100, we
compute

Zi =
n∑
j=1

hi(xj)

which we can do easily by, at every step, computing the 100 hashes of each new
item and adding them to the previous values of the Zi. Our estimate for F2 will be

1
100

∑
i Z

2
i .

That is, the pseudocode of the algorithm is

• Pick 100 random functions h1, . . . , h100, where hi : Σ→ {1,−1}

• Initialize an integer array Z of size 100 to all zeroes

• while not end of stream

– read x from the stream

– for each i in {1, . . . , 100}: Z[i] := Z[i] + hi(x)

• return 1
100

∑100
i=1(Z[i])2

Each Zi has the same distribution as the random variable Z in the one-function
algorithm, so

EZ2
i = F2

VarZ2
i ≤ 2F 2

2

This means that, if we call A the output of the algorithm, we have

3

EA =
1

100

∑
i

EZ2
i = F2

VarA =
1

10, 000

∑
i

VarZ2
i ≤ .02F 2

2

So that

Pr[|A− F2| ≥ .5F2] = Pr

[
|A− EA| ≥

√
.25

.02
·
√
.02F 2

2

]
≤ .02

.25
= .08

or, in other words, there is at least a 92% probability that

.5 · F2 ≤ A ≤ 1.5 · F2

The same calculations show that, by picking 25
ε2

random functions instead of 100
functions one has at least a 92% probability that

(1− ε) · F2 ≤ A ≤ (1 + ε)F2

2 Pseudorandom functions

In the three algorithms that we talked about, the algorithm had to sample and store,
respectively, random functions h : Σ→ {1, . . . , B}, a random function h : Σ→ [0, 1],
and random functions h : Σ → {−1, 1}. Random objects are incompressible, so
we would need Ω(|Σ|) bits to store such functions. Even worse, a random function
h : Σ → [0, 1] cannot be stored at all, because a random real number cannot be
represented using a finite number of bits.

If we look back at the analysis of the algorithms, however, we see that we do not
need our functions to really be random: we just need them to satisfy certain simple
properties that are used in the analysis:

• In the analysis of the heavy hitter algorithm, we just use the fact that for every
two distinct labels a, b, we have

Pr[h(a) = h(b)] =
1

B

4

and the analysis would have worked just as well (with an extra factor of 2 in
the approximation) if we instead had

Pr[h(a) = h(b)] ≤ 2

B

• In the analysis of the algorithm for the number of distinct elements, we can
assume that the function maps uniformly to a discretized set{

1

N
,

2

N
, · · · , 1

}
instead of [0, 1], and if N > n/ε this introduces at most an additional ε error in
the calculations.

Furthermore, for the analysis of the t-th smallest algorithm, we do not need
h to be random function h : Σ → {1/N, . . . , 1}: we just need the calculation
of the expectation and variance of the number of labels in a certain set whose
hash is in a certain range. For this, we just need, for every a 6= b, the values
h(a) and h(b) to be independently distributed. Indeed, even if there was a
small correlation between the distribution of h(a) and h(b), this could also be
absorbed into the error calculations.

• In the analysis of the algorithm for F2, to compute the expectation of Z2 we
need

Eh(a)h(b) = (Eh(a)) · (Eh(b)) = 0

for every a 6= b. Once more, this just requires the values of h to be pair-wise
independent. In the calculation of the variance of Z2, which we did not fully
develop, we also need that for every four distinct labels a, b, c, d, the hash values
h(a), h(b), h(c), h(d) be independent.

We see that all the above cases match the following pattern: we have two finite sets
Σ and R, and we want to sample a function

h : Σ→ R

such that:

1. For every a ∈ Σ, the distribution of h(a) is uniform in R, that is, for every
a ∈ Σ and every r ∈ R

Pr[h(a) = r] =
1

R

5

2. For every two distinct elements a 6= b of Σ, we want h(a) and h(b) to be
independently distributed, that is, for every r1, r2 in R

Pr[h(a) = r1 ∧ h(b) = r2] =
1

R2

3. For every four distinct elements a, b, c, d of Σ, we want h(a), h(b), h(c), h(d) to
be independent, that is, for every r1, r2, r3, 44 in R

Pr[h(a) = r1 ∧ h(b) = r2 ∧ h(c) = r3 ∧ h(d) = r4] =
1

R4

For the count-min algorithm for heavy hitters, R = {1, . . . , B} and we want prop-
erty (2). For the t-th smallest algorithm for the distinct element problem, R =
{1/N, 2/N, . . . , 1} and we want properties (1) and (2). For the algorithm for F2,
R = {−1, 1} and we want properties (1), (2) and (3).

Note that property (2) implies property (1) and property (3) implies properties (1)
and (2). A distribution of hash functions that satisfies property (2) (and (1)) is called
pair-wise independent and a distribution that satisfies (3) (and (1) and (2)) is called
four-wise independent.

There are distribution of pair-wise or four-wise independent hash functions such that
a function sampled from the distribution can be stored using only O(log |Σ|+ log |R|)
bits, provided |R| is a power of a prime number. Here we will sketch a slightly different
result, that works for all Σ and R, but introduces a small error.

Say that a distribution of hash functions is ε-close to pairwise independent if, in
property (2), we only guarantee the weaker property that

1

R2
− ε ≤ Pr[h(a) = r1 ∧ h(b) = r2] ≤ 1

R2
+ ε

and define ε-close to four-wise independent by similarly modifying property (3).

Theorem 1 For every 0 < ε ≤ 1 and every two sets Σ, R, a distribution of hash
functions

h : Σ→ R

ε-close to pairwise independent can be stored using O
(
log |Σ|+ log |R|+ log 1

ε

)
and it

can be evaluated in time polynomial in O
(
log |Σ|+ log |R|+ log 1

ε

)
. The same bounds

can be achieved for a distribution of functions ε-close to fourwise independent.

In applications, the evaluation simply requires a constant number of addition, multi-
plication, and mod operations.

6

Plugging the above theorem into our algorithms, we see that storing the function has
the same space complexity as the rest of the algorithm, meaning that, for a fixed
approximation parameter ε, we can do heavy hitters in O((log n) · (log n + log |Σ|))
space, number of distinct elements in O(log n + log |Σ|) space and F2 is O(log n +
log |Σ|) space.

Now we sketch a proof of the theorem. Let p be a prime number, and suppose that
|Σ| = |R| = p. We will represent both the elements of Σ and the elements of R as the
integers in the set {0, 1, . . . , p− 1}. To sample a hash function, we pick at random x
and y in {0, . . . , p− 1, and we define the function hx,y such that

hx,y(a) := ax+ y mod p

Then we can use basic linear algebra to show that such a distribution of functions is
pair-wise independent. See also section 1.5.2 in the textbook.

If |R| is a prime and |Σ| ≤ |R|, then we use the same construction, by identifying Σ
with a subset of {0, . . . , p− 1}.
Finally, if |R| is not a prime or |Σ| > |R|, we take a prime p > max

{
|Σ|, |R|, 2

ε

}
. We

identify Σ with a subset of {0, . . . , p−1} and we identify R with the set {0, . . . , |R|−1}.
To generate a random function, we pick at random x, y in {0, . . . , p−1}, and we define

hx,y(a) := (ax+ y mod p) mod R

As before, for every a 6= b, the values of hx,y(a) and hx,y(b) are independent. The dis-
tribution of hx,y(a) is not uniform, but every possible value v is taken with probability
equal to

{z : 0 ≤ z ≤ p− 1 ∧ z mod R = v}
p

which is 1
p
·
(
p
R
± 1
)
, that is between 1/R− 1/p and 1/R+ 1/p and, by our choice of

p, at least 1/R − ε/2 and at most 1/R + ε/2. This means that, for a 6= b, the pair
h(a), h(b) takes each possible value in R × R with probability at least (1/R − ε/2)2,
which is at least 1/R2 − ε and at most (1/R + ε/2)2 which is at most (1/R2 + ε).

The memory use is 2 log p. For every n, there is always a prime p such that n ≤
p ≤ 2n, so we can choose p ≤ 2 ·max{|Σ|, |R|, 1/ε} and, with such a choice, 2 log p =
O(log |Σ|+ log |R|+ log 1/ε).

The proof for the four-wise independent case is a bit more complicated and we will
skip it.

3 Summary

We have the following algorithmic guarantees for the problems that we have studied:

7

• Heavy hitters: for every fixed threshold 0 < t < 1, and approximation parameter
ε, given a stream of n elements of Σ, we can construct, using space O(ε−1·(log n)·
(log n+ log |Σ|)), a list that:

– With probability 1, contains all the labels that occur ≥ t · n times in the
stream

– With probability ≥ 1 − 1/n, contains no label that occurs ≤ (t − ε) · n
times in the stream

• Distinct elements: for every approximation parameter ε, given a stream of n
elements of Σ, we can compute a number that is, with probability > 90%,
between k − εk and k + εk, where k is the number of distinct elements in the
stream, using space O(ε−2 · (log n+ log |Σ|))

• F2: for every approximation parameter ε, given a stream of n elements of Σ,
we can compute a number that is, with probability > 90%, between F2 · (1− ε)
and F2 · (1 + ε), using space O(ε−2 · (log n+ log |Σ|)).

4 Memory lower bounds

To prove memory lower bounds, we will show that if there was an exact deterministic
algorithm that uses o(min{|Σ|, n}) memory and solves the heavy hitters problem,
counts the number of distinct elements, or computes F2, then there would be an
algorithm that is able to compress any L-bit file to a o(L)-bit compression. The
latter is clearly impossible, and so sub-linear memory deterministic exact streaming
algorithms cannot exist.

In the following, a “compression algorithm” is any injective function C that maps bit
strings to bit strings. The following is well known.

Theorem 2 There is no injective function C that maps all L-bit strings to bit strings
of length ≤ L− 1.

Proof: There are 2L bit strings of length L and only 2L − 1 bit strings of length
≤ L− 1. �

The lower bound for counting distinct elements follows from the lemma below.

Lemma 3 Suppose that there is a deterministic exact algorithm for counting distinct
elements that uses o(min{|Σ, n}) bits of memory to process a stream of n elements of
Σ.

Then there is a compression algorithm that maps L-bit strings to bits strings of length
o(L).

8

Since the conclusion is false, the premise is also false, and so every deterministic exact
algorithm for counting distinct elements must use memory Ω(min{|Σ|, n}).
Here is how we prove the lemma: given a string b1, . . . , bL of L bits that we want to
compress, we define Σ as the set

{(1, 0), (1, 1), (2, 0), (2, 1), . . . , (L, 0), (L, 1)}

and we consider the stream

(1, b1), (2, b2), . . . , (L, bL)

We run our hypothetical streaming algorithm on the above stream, and we take the
state of the algorithm at the end of the computation as our compression of the string
b1, . . . , L. Note that n = L and Σ = 2L, so the state of the algorithm is o(L) bits.

Why is this a valid compression? Using the state of the algorithm, we can find what
is the number of distinct elements in the stream

(1, b1), (2, b2), . . . , (L, bL), (1, 0)

just by restarting the algorithm and presenting (1, 0) as an additional input. Now,
the number of distinct elements will be L if b1 = 0 and L + 1 if b1 = 1. So we have
found the first bit of the string. Similarly, for each i, we can find out the number of
distinct elememnts in

(1, b1), (2, b2), . . . , (L, bL), (i, 0)

and so we can reconstruct the whole string.

The F2 lower bound is very similar.

Lemma 4 Suppose that there is a deterministic exact algorithm for computing F2

that uses o(min{|Σ, n}) bits of memory to process a stream of n elements of Σ.

Then there is a compression algorithm that maps L-bit strings to bits strings of length
o(L).

We use the same compression as before: the state of the algorithm after processing

(1, b1), (2, b2), . . . , (L, bL)

where b1, . . . , bL is the string we want to compress. Now, for every i, the value of F2

for
(1, b1), (2, b2), . . . , (L, bL), (i, 0)

is n+ 1 if bi = 1, because we have n+ 1 distinct elements occurring once each, and it
is n + 3 if bi = 0, because we have n − 1 elements occurring once and one occurring
twice.

Finally,

9

Lemma 5 Suppose that there is a deterministic algorithm f that uses o(min{|Σ, n})
bits of memory to process a stream of n elements of Σ and outputs a list that contains
all, and only, the labels that occur at least .3n times in the stream.

Then there is a compression algorithm that maps L-bit strings to bits strings of length
o(L).

This time, if we want to compress a string b1, . . . , bL, we use

Σ = {(1, 0), (1, 1), (2, 0), 2, 1), . . . , (L, 0), (L, 1),⊥}

and our compression is the state of the algorithm after processing

(1, b1), (2, b2), . . . , (L, bL),⊥, . . . ,⊥

where ⊥ is repeated .4L+ 1 times.

The key observation is that, for every i, the stream

(1, b1), (2, b2), . . . , (L, bL),⊥, . . . ,⊥, (i, 0), . . . , (i, 0)

where (i,0) is repeated .6L−1 times, is of length n = 2L, and (i, 0) appears .6L = .3n
times if bi = 0 and only .6L − 1 < .3n if bi = 1. Thus (i, 0) will be in the output of
the heavy hitter algorithm in the first case, and not in the second. Repeating this for
every i allows us to reconstruct the string.

10

	Approximating F2
	Pseudorandom functions
	Summary
	Memory lower bounds

