CS 170 Tutorial #1

Invariants and Proofs of Correctness

Why do we use induction?

Property P(n): sum of first n natural numbers is 1/2* n*(n+1)
We want to prove P(n) for all natural numbers n.

Strategy:
Prove P(0), P(1), P(2), ... @

Better Strategy:

Use induction!

Choose Induction Hypothesis to be P
1. Base case: Prove P(0)
2. Induction case: P(k) => P(k+1)

Reasoning about algorithms
with loops

while (x > 0) {
X==j;
y++;
}
Property: y equals ¢ after the loop terminates

Strategy:
Compute state after iteration #1, iteration #2, ... @
Prove that state after last iteration hasy = ¢

Better Strategy:

Use induction (over number of iterations)
Base case: Prove induction hypothesis holds on loop entry
Induction case: Assuming induction hypothesis holds after k
iterations, prove it holds after k+1 iterations

Step 1: Construct an
Inductive Hypothesis

X =c; v = 0;
while (x > 0) {
X==;
y++;

}
We can generalize from examples...

e Onloopentry:x=c,y=0

iInductive hypothesis
X+Yy=C

* Afteriteration 1: x=c-1,y =1

o Afteriteration2:x=c-2,y=2

Inductive Hypothesis
'S the loop Invariant!!!

1.

Step 2: Prove that Loop
Invariant 1S InQuctive

Xx=c;y=0;
while (x > 0) {
X—=;
y++;

}
Base case: loop invariant x + y = ¢ holds on loop entry
True

Inductive case:

Assume |loop invariant holds after k iterations:
V=K, X=Cc-y=cCc-K

After the (k+1)st iteration,y =k + 1, x=c -k -1
Therefore, x+y=k+1+c-k-1=¢c¢C

True

Step 3: Proving correctness
property using loop Iinvariant

Xx=c;y =0;
while (x > 0) {
X==;
yt++;

}

* Use loop invariant to prove correctness property that
y = C after loop terminates

After tinal iteration: x = 0
We also know our loop invariant holds: x + y = C

Theretore, y = C.

Practice Problems

e Divide into groups of 2-3

Problem 1

Consider the following piece of code:

return y;

What is the value of y after the loop termination?

(Hint : Try to find a loop invariant that holds at the start of each loop iteration)

Aside: For loops

for (1 =0; 1 <= n; 1++) {
// invariant: I(1) 1s true
. Loop body ...

}

is equivalent to:

1 :=0
loopstart:
// invariant: I(1) 1s true
1f 1 > n: goto end
. Loop body ...
1 = 1+1
goto loopstart
end

Step 1 : Run a few iterations

y = 0;
for (1 = 0; 1 <= n; i++) {
y += 271;
}
At the start of each iteration:
e 1=0:y,=0
e i=1:y,=1

1=2:y,=1+2=3
3:y;=1+2+4=7
4

'y, =1+2+4+8=15

Any pattern?

Step 1 : Run a few iterations

Hh N
e |
I -~
|
- O
I—l
A
|
—
|_n
+
+
.

At the start of each iteration:

e i=0:y,=0=2°-1

¢ i=1l:y,=1=21-1

'y, =142=3=22-1
Y;=1+2+4=7=23-1
y,=1+2+4+8=15=24-1

I
N

I
B~ W

Step 1 : Run a few iterations

)4 0
for (1
y +

e
I
M- ©

; 1 <= n; 1it++) {
4
}

At the start of each iteration:

e i=0:y,=0=2°-1

'y, =1=2%-1
y,=1+2=3=22-1
y,=1+42+4=7=23-1

'y, =1+2+4+8=15=2%-1

I
B~ W N -

It looks like y; = 2' — 1 is a good candidate for loop invariant

Step 2 : Prove that loop invariant is inductive

* Base case
i=0:y0=2°—1=0 v

* Inductive step
Assume that at the start of the i-th iterationy, =2' -1

Then, at the start of the (i+1)-th iteration we will have:
Vi1 =Y +21=21-1+2"=2x21-1=2"1-1 Q.E.D.

Step 3 : Loop invariant at the last iteration

 When the loop terminates i = n + 1. Thus after the loop execution we have:

y=2n+1_1

Problem 2: Binary
Search

Binary Search

def binary search(A, target): You've all seen this a billion

1o = 0 times.

hi = len(A) - 1

while lo <= hi:
mid = (lo + hi) / 2 But how do we prove that
if A[mid] == target: it’s correct?

return mid

elif A[mid] < target: leen'that A is sorted and A
contains target, prove that

lo = mid + 1 binary_search(A, target)
else: always returns target’s index
hi = mid - 1 within A

Use Loop Invariants!!

Step 1: Hypothesize a Loop Invariant

def binary_search(A, target): say we'researching for 14 in the following
lo = 0 array A
hi = len(A) - 1

hite 1o < hi: CIEIEAEIEREREE
-5 10 14 33 42 42 42

mid = (lo + hi) / 2

if Almid] == target:

l_'eturn .mld 1t step:lo=0, hi=6, mid=3
elif Almid] < target:

lo = mid + 1 2" step:lo=0,hi=2, mid=1
else:

hi = mid - 1 3dstep:lo=2, hi=2, mid=2

At each step of the while loop, lo and hi surrounded the actual location of where 14 is! This
was always true!

THIS IS OUR LOOP INVARIANT.

Step 1: Construct Loop Invariant
0 1]2[3]4)56
| !

lo hi
At each iteration of the while loop,
0] 1]2[3]4)56 0 and hi are such that
-5 10 14 33 42 42 42
lo hi
0] 1]2[3]4]5]6
-5 10 14 33 42 42 42

lo
hi

A[lo] < target < A[hi]

Step 2: Prove that loop invariant is inductive

* Base Case: when the algorithm begins, lo = 0 and hi = len(A) -
1. lo and hi enclose ALL values, so target must be between lo

and hi.

* Inductive Hypothesis: suppose at any iteration of the loop, lo
and hi still enclose the target value.

* Inductive Step:
— Case 1: If A[mid] > target, then the target must be between lo and mid
* We update hi=mid-1
— Case 2: If A[mid] < target, then the target must be between mid and hi
* we update lo=mid +1
— |In either cases, we preserve the inductive hypothesis for the next loop

Step 3: Prove correctness property using loop
Invariant

* Notice for each iteration,
lo always increases and
. 1
hi always decreases. gl-oeeeee
These value will converge
at a single location where !

lo = hi. lo
hi

* By the induction

hVPOthESiS, A[IO] < targEt Food for thought: How will the

< A[hl] . proof change if target isn’t in the
array?

Problem 3: array reversal

In-place Array Reversal

//inputs: array A of size n
void reverse array(int *A, int n):
int 1 = (n - 1) / 2;
int 3 = n / 2;
int tmp;
while (1 >= 0 && 7 <= (n - 1))
tmp = A[1];
A[1] = A[]J];
A[]J] = tmp;

Prove that array A of size n is
reversed as a result of
invoking reverse_array(A, n)

22

Step 1: Hypothesize a Loop Invariant

T T Before iteration of the while loop,

i and j are such that:

A[i+1 : j-1] is reversed

0 |12 34 5 6
-5 10 14 33 42 42 42

T T new_A[i+1 :j-1] = reverse(old_A[i+1 : j-1])
i] where,

Or more formally,

reverse([]) =[]
([a0]) = [a0]
nnnn“n :ng(:ZO, al, é..]) = [reverse([al,...]), a0]
-5 10 42 33 14 42 42
] |

| J

Step 2: Prove that loop invariant is inductive

Loop invariant: A[i+1 : j-1] is reversed

Base Case: Upon loop entry, j-1 < i+ 1. Invariant holds trivially.

Inductive case:
At the start of k-th iteration, assume that A[i+1 : j-1] is

reversed.
The loop body swaps Ali] and A[j], decrements i and

iIncrements j.
Therefore, at the start of (k+1)-th iteration, we can prove that

Ali+1 : j-1] is reversed.

Step 3: Prove correctness property using loop

Invariant
(0|12 |3[4|5]6
-5 10 14 33 42 42 42

{ !

i J

* After the loop terminates, i =-1 and j=n.

* Loop invariant tells us that A[i+1 : j-1] is
reversed.

* Therefore, A[O:n-1] is reversed.
QED

