CS 170: Algorithms

Prof David Wagner. Slides edited from a version created by Prof. Satish Rao. For UC-Berkeley CS170 Fall 2014 students use only. Do not re-post or distribute

CS 170: Algorithms

David Wagner (UC Berkeley)

CS 170: Fall 2014

Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle? For each edge (u, v) remove, check if v is connected to uO(|E|(|E|+|V|)). Linear Time (i.e. O(|V|+|E|))?

David Wagner (UC Berkeley)

Introspection: pre/post.

Previsit(v):

- 1. Set pre[v] := clock.
- 2. clock := clock+1

Postvisit(v):

Set post[v] := clock.
 clock := clock+1
 DFS(G):

 Set clock := 0.

Clock: goes up to 2 times number of tree edges. First pre: 0

Property: For any two nodes, *u* and *v*, [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or one is contained in other.

Interval is "clock interval on stack."

Either both on stack at some point (contained) or not (disjoint.)

Directed Acyclic Graphs: Depth First Search

Edge: (u, v)From u to v. Source – u Dest – v

Given a DFS forest, the edge (u, v) of the graph is a

Tree edge – "Direct call tree of explore", $(u, v) \in T$, pre(u) < pre(v) < post(v) < post(u).

Forward edge – "Edge to descendant (not in tree), $(u, v) \notin T$, pre(u) < pre(v) < post(v) < post(u)

```
Back edge – "Edge to ancestor" (u, v) \notin T,

pre(v) < pre(u) < post(u) < post(v)
```

```
Cross edge – None of the above: (u, v) \notin T,

pre(v) < post(v) < pre(u) < post(u)

v already explored before u is visited.
```

These are all the possible edges.

Directed Acyclic Graph

Directed Graph ...without cycles. Why?

Example.

Acyclic Graph?

Depth first search: directed.

Back edge (u, v): int(v) contains int(u).

int(C) = [3,4] and int(B) = [1,8].

Back edge (u, v)....edge to ancestorpath of tree edges from v to u. Back edge means cycle! \implies not acyclic!

Testing for cycle.

Thm: A graph has a cycle if and only if there is a back edge in any DFS.

Proof:

We just saw: Back edge \implies cycle!

In the other direction: Assume there is a cycle

 $v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$

Assume that v_0 is the first node explored in the cycle (without loss of generality since can renumber vertices.)

When **explore**(v_0) returns all nodes on cycle explored. All int[v_i] in int[v_0]!

 \implies (v_k , v_0) is a back edge.

 $\mathsf{Cycle} \implies \mathsf{back} \ \mathsf{edge!}$

Fast checking algorithm.

Thm: A graph has a cycle if and only if there is back edge. Algorithm ??

```
Run DFS.

O(|V| + |E|) time.

For each edge (u, v): is int(u) in int(v).

O(|E|) time.
```

O(|V| + |E|) time algorithm for checking if graph is acyclic!

Directed Acyclic Graph

No cycles! Can tell in linear time!

Ohhh...Kayyyy... Really want to find ordering for build!

Linearize.

Topological Sort: For G = (V, E), find ordering of all vertices where each edge goes from earlier vertex to later in acyclic graph.

Topological Sort Example.

A linear order:

A, E, F, B, G, D, C

In DFS: When is A popped off stack?

Last! When is E popped off? second to last. ...