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Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?

For each edge (u,v) remove, check if v is connected to u
O(|E |(|E |+ |V |)).
Linear Time (i.e. O(|V |+ |E |))?
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Directed graphs.
G = (V ,E)

vertices V .
edges E ⊆ V ×V .

Edge: (u,v)
From u to v .

Source – u
Dest – v
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Introspection: pre/post.

Previsit(v):
1. Set pre[v] := clock.
2. clock := clock+1

Postvisit(v):
1. Set post[v] := clock.
2. clock := clock+1

DFS(G):
0. Set clock := 0.

...

Clock: goes up to 2 times number of tree edges.
First pre: 0

Property: For any two nodes, u and v , [pre(u),post(u)] and [pre(v),post(v)]
are either disjoint or one is contained in other.

Interval is “clock interval on stack.”

Either both on stack at some point (contained) or not (disjoint.)
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Directed Acyclic Graphs: Depth First Search
Edge: (u,v)

From u to v .
Source – u
Dest – v

Given a DFS forest, the edge (u,v) of the graph is a

Tree edge – “Direct call tree of explore”, (u,v) ∈ T ,
pre(u)< pre(v)< post(v)< post(u).

Forward edge – “Edge to descendant (not in tree), (u,v) /∈ T ,
pre(u)< pre(v)< post(v)< post(u)

Back edge – “Edge to ancestor” (u,v) /∈ T ,
pre(v)< pre(u)< post(u)< post(v)

Cross edge – None of the above: (u,v) /∈ T ,
pre(v)< post(v)< pre(u)< post(u)
v already explored before u is visited.

These are all the possible edges.
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Directed Acyclic Graph

Directed Graph ...without cycles.
Why?

Hello

Goodbye

“Hello” before “Goodbye”
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Example.

Acyclic Graph?
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Depth first search: directed.
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Back edge (u,v): int(v ) contains int(u).

int(C) = [3,4] and int(B) = [1,8].

Back edge (u,v)
....edge to ancestor
..........path of tree edges from v to u.
Back edge means cycle! =⇒ not acyclic!
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Testing for cycle.

Thm: A graph has a cycle if and only if there is a back edge in any
DFS.

Proof:
We just saw: Back edge =⇒ cycle!

In the other direction: Assume there is a cycle

v0→ v1→ v2 · · · → vk → v0

Assume that v0 is the first node explored in the cycle
(without loss of generality since can renumber vertices.)

When explore(v0) returns all nodes on cycle explored.

All int[vi ] in int[v0]!

=⇒ (vk ,v0) is a back edge.

Cycle =⇒ back edge!
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Fast checking algorithm.

Thm: A graph has a cycle if and only if there is back edge.
Algorithm ??

Run DFS.
O(|V |+ |E |) time.

For each edge (u,v): is int(u) in int(v).
O(|E |) time.

O(|V |+ |E |) time algorithm for checking if graph is acyclic!
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Directed Acyclic Graph

Hello

Goodbye

“Hello” before “Goodbye”

No cycles! Can tell in linear time!

Ohhh...Kayyyy...
Really want to find ordering for build!

David Wagner (UC Berkeley) CS 170: Fall 2014 September 19, 2014 12 / 33



Linearize.

Topological Sort: For G = (V ,E), find ordering of all vertices where
each edge goes from earlier vertex to later in acyclic graph.

Hello Tea w/me. Dinner. Goodbye

Hello Tea w/me.Dinner. Goodbye
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Topological Sort Example.
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A linear order:

A,E ,F ,B,G,D,C

In DFS: When is A popped off stack?

Last! When is E popped off? second to last. ...

David Wagner (UC Berkeley) CS 170: Fall 2014 September 19, 2014 14 / 33


