## CS 170: Algorithms

Chlyorilines

Prof David Wagner.
Slides edited from a version created by Prof. Satish Rao. For UC-Berkeley CS170 Fall 2014 students use only. Do not re-post or distribute

## CS 170: Algorithms



## Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?
For each edge $(u, v)$ remove, check if $v$ is connected to $u$ $O(|E|(|E|+|V|))$.
Linear Time (i.e. $O(|V|+|E|)$ )?

Directed graphs.
$G=(V, E)$
vertices $V$. edges $E \subseteq V \times V$.
Edge: $(u, v)$
From $u$ to $v$.
Source - $u$ Dest - v


## Introspection: pre/post.

## Previsit(v):

1. Set pre[v] := clock.
2. clock := clock+1

## Postvisit(v):

1. Set post[v] := clock.
2. clock := clock+1

## DFS(G):

0 . Set clock :=0.

Clock: goes up to 2 times number of tree edges. First pre: 0
Property: For any two nodes, $u$ and $v,[\operatorname{pre}(u), \operatorname{post}(u)]$ and $[\operatorname{pre}(v), \operatorname{post}(v)]$ are either disjoint or one is contained in other.

Interval is "clock interval on stack."
Either both on stack at some point (contained) or not (disjoint.)

## Directed Acyclic Graphs: Depth First Search

Edge: $(u, v)$
From $u$ to $v$.
Source-u
Dest - v
Given a DFS forest, the edge $(u, v)$ of the graph is a
Tree edge - "Direct call tree of explore", $(u, v) \in T$,
$\operatorname{pre}(u)<\operatorname{pre}(v)<\operatorname{post}(v)<\operatorname{post}(u)$.
Forward edge - "Edge to descendant (not in tree), $(u, v) \notin T$,
$\operatorname{pre}(u)<\operatorname{pre}(v)<\operatorname{post}(v)<\operatorname{post}(u)$
Back edge - "Edge to ancestor" $(u, v) \notin T$,
$\operatorname{pre}(v)<\operatorname{pre}(u)<\operatorname{post}(u)<\operatorname{post}(v)$
Cross edge - None of the above: $(u, v) \notin T$, $\operatorname{pre}(v)<\operatorname{post}(v)<\operatorname{pre}(u)<\operatorname{post}(u)$ $v$ already explored before $u$ is visited.

These are all the possible edges.

## Directed Acyclic Graph

## Directed Graph ...without cycles. <br> Why?

Dependency Graph

"Hello" before "Goodbye


## Example.

## Acyclic Graph?



## Depth first search: directed.



Back edge ( $u, v$ )
....edge to ancestor
..........path of tree edges from $v$ to $u$.
Back edge means cycle! $\Longrightarrow$ not acyclic!

## Testing for cycle.

Thm: A graph has a cycle if and only if there is a back edge in any DFS.

## Proof:

We just saw: Back edge $\Longrightarrow$ cycle!
In the other direction: Assume there is a cycle
$v_{0} \rightarrow v_{1} \rightarrow v_{2} \cdots \rightarrow v_{k} \rightarrow v_{0}$
Assume that $v_{0}$ is the first node explored in the cycle (without loss of generality since can renumber vertices.)
When explore $\left(v_{0}\right)$ returns all nodes on cycle explored.
All int $\left[v_{i}\right]$ in int $\left[v_{0}\right]$ !
$\Longrightarrow\left(v_{k}, v_{0}\right)$ is a back edge.
Cycle $\Longrightarrow$ back edge!

## Fast checking algorithm.

Thm: A graph has a cycle if and only if there is back edge. Algorithm ??

## Run DFS.

$O(|V|+|E|)$ time.
For each edge $(u, v)$ : is $\operatorname{int}(u) \operatorname{in} \operatorname{int}(v)$.
$O(|E|)$ time.
$O(|V|+|E|)$ time algorithm for checking if graph is acyclic!

## Directed Acyclic Graph



No cycles! Can tell in linear time!
Ohhh...Kayyyy...
Really want to find ordering for build!

## Linearize.

Topological Sort: For $G=(V, E)$, find ordering of all vertices where each edge goes from earlier vertex to later in acyclic graph.


## Topological Sort Example.



A linear order:
$A, E, F, B, G, D, C$
In DFS: When is $A$ popped off stack?
Last! When is $E$ popped off? second to last. ...

