
CS 170 Algorithms
Fall 2014 David Wagner 11/26 Notes

Random forests
Next, we’ll look at random forests, another machine learning algorithm for the classification prob-
lem. The random forest classifier is a collection of decision trees—we’ll see in a moment what
that means. Its primary benefits are (a) empirically, this approach often seems to work reasonably
well on a broad variety of applications, (b) it is well-suited to efficient implementation.

We’ll focus on classification where all our features are continuous variables (real numbers). In
other words, each observation is a point in Rd , where d is the number of features. Let Y denote
the set of classes (e.g., Y = {spam,not-spam}, for spam classification).

Decision trees
A decision tree is a binary tree that represents a function Rd →Y . In particular:

• Each leaf is labeled with a decision: a class y ∈ Y .

• Each internal node is labeled with a binary condition: a coordinate i and a threshold t. If
we have an observation x ∈ Rd , and if we reach this node, then if xi ≤ t, we’ll go left (to
this node’s left child), otherwise we’ll go right (to this node’s right child). Thus, the binary
condition splits the set of observations into two sets.

We think of the decision tree as representing an iterative decision process. Given a point x ∈ Rd ,
we start at the root of the tree. We check whether the binary condition at the root is true or false,
and use that to go left or right to its left/right child. We repeat this until we reach a leaf. The value
y at the leaf reached in this way is the value of the function on input x.

Decision tree inference
Suppose we have a training set S of observations labeled with their classes. We’d like an algorithm
to build a decision tree that agrees with most or all of the observations in the training set. How do
we do it?

In practice, we typically want to put a limit on the size of the decision tree, to avoid overfitting
(discussed later). Therefore, the real goal is to find a decision tree that is “not too large” and that
agrees with as much of the training set as possible. Here “not too large” might be defined in terms
of the depth of the decision tree.

CS 170, Fall 2014, 11/26 Notes 1

Unfortunately, finding an optimal decision tree is NP-hard, and there are exponentially many pos-
sible decision trees, so we can’t try them all. Therefore, we will use a heuristic: an algorithm that
often works well in practice, even though we can’t prove anything about it.

In particular, we will use a greedy algorithm. Our greedy algorithm tries all possible binary condi-
tions that could appear at the root and selects the one that seems best. Then, it uses this condition
to split the training set S into SL and SR, where SL are the training samples that are sent to the left
of the root and SR are the training samples that are sent to the right, and it recursively applies the
same greedy strategy to both of those sets. Thus, we build a decision tree in a top-down fashion,
selecting at each node the binary condition that maximizes some measure of how good it is.

What goodness measure shall we use? Intuitively, we are hoping to find a binary condition that
splits S into SL and SR, where the class of most observations in SL is the same, and the class of
most observations in SR is the same. Indeed, the best possible case would be where everything in
SL has the same class, and everything in SR has the same class—then we could make both children
of the root be a leaf, and our tree-building process would terminate. In practice, usually we can’t
achieve a perfect split like that, but our goodness measure should try to measure how close to that
we are. So, we’ll use

goodness(condition) = impurity(S)−
[
|SL|
|S|
× impurity(SL)+

|SR|
|S|
× impurity(SR)

]
,

where impurity(S) is some measure of how much diversity there is in the classes of the observations
in S. The term in the square brackets is a weighted average, weighted by the number of observations
that are classed in SL or SR; it is the expected impurity, for a randomly chosen observation from
S. Thus, our goodness measure quantifies how much improvement we’ve made: how much closer
we’ve got to a perfect split.

All that remains is to select an impurity metric. What shall we use? There are several standard
impurity metrics that are commonly used in practice, but fortunately, they all seem to perform
about equally well, so you can use any one of them. We’ll use the entropy of the classes as our
impurity metric. The corresponding goodness metric is called the information gain metric. Thus,
for each possible binary condition, we’ll calculate its information gain, and choose the condition
whose information gain is highest.

The information gain is defined in terms of entropy, so we first need to define the entropy of a
probability distribution. Suppose we have a random variable Y that takes on values in some set Y .
Then its entropy is defined to be

H(Y) =−∑
y∈Y

Pr[Y = y] lgPr[Y = y].

(To make sure the expression above is well-defined, the sum is taken over all y ∈ Y such that
Pr[Y = y] 6= 0. Or, another way to put it is that we define 0lg0 to be 0.) We define impurity(S)
as H(Y), where Y is a random variable that indicates the class of a randomly chosen observation
(choose an observation uniformly at random from S, then let Y be its class). Note that Pr[Y = y] is
the fraction of observations in S that take on the class y.

The information gain metric is then

goodness(condition) = H(Y)−
[
|SL|
|S|
×H(YL)+

|SR|
|S|
×H(YR)

]
,

CS 170, Fall 2014, 11/26 Notes 2

where SL,SR are the results of partitioning S using the binary condition mentioned above, Y is the
class of a random observation in S, YL is the class of a random observation in SL, and YR is the class
of a random observation in SR. At each node in the tree, the greedy algorithm selects the binary
condition that maximizes this metric (that maximizes the information gain).

This describes how to choose the binary condition at each node of the decision tree: choose a
condition that maximizes the information gain, and then recurse. When do we stop recursing?
There are many possibilities. To list a few:

1. Stop when the set of observations all has the same class. Obviously, at this point we don’t
need to split any more: we can create a leaf labeled with the class of those observations.

2. Stop when the depth of the node reaches some predetermined level (e.g., depth 10). At this
point we can look at the class of all the observations that reach this node, find the class that
occurs most often, and make it the label for this node.

3. Stop when the entropy of the class of the observations that reach this node falls below some
threshold. Again, we can label the new leaf with the most-common class of the observations
that reach this point.

We might combine several of these rules, e.g., 1+2 or 1+3.

Another alternative is to build the entire decision tree, without stopping (except for rule 1 above),
and then after it is built, prune the tree to make it smaller. We won’t examine this further in this
course, but in some settings this can yield even better results.

In pseudocode, we get the following algorithm:

BuildDecTree(S):
1. If all of the entries of S have the same class (or some other stopping condition is met):
2. Build a tree with a single node (a leaf). Label the leaf with the class that appears most

frequently in S. Return this tree.
3. For each feature i (i.e., for i := 1,2, ..,d):
4. Sort all the values of feature i that appear in S. Let v1, . . . ,vk denote those values in

increasing order, with duplicates removed, so that v1 < v2 < · · ·< vk.
5. For each t ∈ {(v1 + v2)/2,(v2 + v3)/2, . . . ,(vk−1 + vk)/2}:
6. Compute the information gain metric for the binary condition xi ≤ t.
7. Let i, t be the values of i, t that maximize the information gain metric.
8. Split S into SL and SR based on the binary condition xi ≤ t.
9. Let TL := BuildDecTree(SL) and TR := BuildDecTree(SR).
10. Build a decision tree whose root is labeled xi ≤ t, with TL as its left subtree and TR as its

right subtree. Return this tree.

This greedy algorithm for building a decision tree is often known under the name ID3. We could
use this algorithm for classification, by learning a decision tree from the training data and then
using it to classify future observations. It turns out this is not a terrible classifier, but we can do
even better using the ideas presented next.

CS 170, Fall 2014, 11/26 Notes 3

Random forests
A random forest is a collection of a decision trees. To classify an observation x ∈Rd , we classify x
with each of the decision trees, treat each tree’s output as a vote for x’s class, and output whichever
class received the most votes. The idea is that any one decision tree might be wrong, but taking a
majority vote of multiple different trees will (hopefully) reduce our error rate.

This idea only works if each tree is different. The ID3 algorithm above is deterministic, so if we
run it multiple times on the same training set S, we’ll get the same decision tree each time, which
is not of any help. We want each decision tree in the forest to be different, and ideally as different
from the others as possible. We’ll do this by injecting some randomness into the tree-building
process—this is the “random” part of random forests.

The random forests classifier introduces randomness in two different ways: (a) bagging, and (b)
feature sampling. We’ll describe each of them next.

Bagging. Rather than training each tree on the same training set S, we sample the training set
to generate a random subset of S and train on that subset. In particular, suppose S contains n
observations. The simplest approach is to sample, with replacement, n times. In other words, we
repeat the following n times: pick a random element of S (uniformly at random, without regard to
what prior choices we’ve made) and add it to our subset. Note that we sample with replacement,
which means that the same element of S might be selected multiple times. This is OK; we don’t
try to avoid selecting the same element multiple times.

Let S∗ denote the subset selected in this way. We then build a decision tree using the greedy
algorithm outlined above (ID3), using S∗ as the training set for this tree. We choose a different
subset S∗ for each decision tree in the forest.

This procedure is called bagging. It helps ensure that each decision tree is different: because each
tree is built from a different subset of the training data, the trees will likely be slightly different.
Ideally, what we hope will happen is that each tree is better at classifying a certain type of data.

How large will the subset S∗ be, with this procedure? We can calculate the answer using linearity
of expectation. Let Xi be an indicator random variable, which is 1 if the ith element of S is selected
(included in S∗) or 0 if not. Then |S∗| = X1 +X2 + · · ·+Xn, so the expected size of S∗ is E[X1 +
· · ·+Xn], which is the same as E[X1]+ · · ·+E[Xn] (by linearity of expectation). Now

Pr[X1 = 0] = (1−1/n)n ≈ 1/e≈ 0.368,

so
E[X1] = Pr[X1 = 1] = 1− (1−1/n)n ≈ 1−1/e≈ 0.632.

The same is true for each Xi, by symmetry. Therefore, the expected size of S∗ is about 0.632n, or
about 63% of the size of the full training set S.

As a generalization, instead of sampling n times from S, you can form S∗ by sampling cn times
from S (with replacement), where 0 < c≤ 1 is some small constant, say c = 1 or c = 0.7.

CS 170, Fall 2014, 11/26 Notes 4

Feature sampling. The second way we inject randomness is by artificially restricting the set
of features that can be used at each node of each decision tree. In particular, when we use ID3
(the greedy algorithm) to build a decision tree, at each node, instead of considering all d possible
features, we consider only a subset of the features. In particular, we choose a random subset of

√
d

of the features. Then, we try each of those
√

d features, and each possible threshold, to find the
one that maximizes the information gain; that’s what we use at this node of the tree. We choose a
different, independent subset of features at each node and for each tree.

The purpose of this is to try to force each decision tree to be as different as possible from the others.
Suppose there is a single feature that provides the largest information gain. Without the feature
sampling tweak, every decision tree would use that feature at its root. With feature sampling, some
trees will use that feature at their root and some won’t. (Probably many or most trees will end up
using that feature somewhere, but not necessarily at the root.)

The size of the subset is a parameter that can be varied. There is nothing magic about using
√

d
(the square root of the number of features); it’s just a value that seems to work fairly well in a
number of settings. Others have suggested 2

√
d, or trying several different values to see which

works best.

Putting it all together. So, here is how we build a random forests classifier. We pick a number
of trees—say, 50. We generate 50 random decision trees. For each tree, we use bagging to select a
random subset of the training data (a different subset for each tree). We apply the greedy algorithm
to this subset of training data to build a decision tree, but at each node considering only a random
subset of the features (a different subset for each node and each tree). This gives us a collection
of 50 decision trees; that’s our forest. Now, to classify a new observation x, each tree votes on the
class of x. We output the class that appears most commonly among these 50 votes.

Empirically, the random forests classifier seems to work well in a broad variety of settings. It is an
excellent choice for a first machine learning algorithm to try, if you have a new data set.

One of the handy features about random forests is that they can be efficient, and they are very well
suited to parallel implementation: you can parallelize both the training process (you can build each
decision tree independently, on a separate machine in a big cluster) and the classification process
(you can apply each decision tree to your observation in parallel, on multiple cores). This makes
random forests a good candidate to consider when very fast classification is needed.

Other sources. If you’d like more information on decision trees and random forests, one nice
source is https://alliance.seas.upenn.edu/˜cis520/wiki/index.php?n=Lectures.
DecisionTrees.

CS 170, Fall 2014, 11/26 Notes 5

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.DecisionTrees
https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.DecisionTrees

