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Machine 1earning: the classification pro]olem

Next, we will study machine learning, and specifically, classification using supervised learning.
We are given n observations xi, .. .,x,; each observation x; is labeled with a class y;. Now we are
given a new observation x, and the challenge is to predict its class.

Let’s take an example: spam filtering. Each observation x; might be a single email message, and the
classification y; might indicate whether this email is spam or not. We might have a large training
set (x1,y1),---, (xn,yn) of messages that are already labeled as spam or not-spam. (For instance,
these might be obtained from a user’s saved email messages and their spam folder.) The spam filter
can process the training set to look for patterns that might tend to be associated with spam. Now
when a new email x arrives, the spam filter’s job is to predict whether x is spam or not. The goal
of a classification algorithm is to automate this entire process, including looking for patterns in the
training set and using this to classify new emails x as they arrive.

Spam filtering is an example of a boolean classification problem. Boolean classification is the
special case of the classification problem, where we have only two possible classes (e.g., spam and
not-spam).

The classification problem can be modeled as follows. Let X be the space that observations are
drawn from, and ) the set of classes. We are given n observations labeled with their class, namely,
(x1,¥1),---, (Xn,yn), where x; € X and y; € Y. Now given x € X', we want to predict the class y € )
of x.

Conceptually, we imagine that there is some function f : X — ) that determines the class of an
observation, as a function of the observation itself. In particular, we might assume that every
observation in the training set is correctly labeled: in other words, that f(x;) = y; for all i. Our goal
is to try to learn the function f, or some approximation to it.

Algorithms for the classification problem are extremely useful in practice. They’re used widely
in industry, e.g., to predict which machines might fail, or which transactions might be fraud, or
which customers might be worth extra effort to please, or which patients might be at greatest
risk of illness, to name just a few examples. New algorithms—and the availability of richer data
sets—have spurred tremendous advances and broad use of these methods in industry.

There are many widely used algorithms for classification: some common ones include naive Bayes
classifiers, neural networks (perceptrons), k-nearest neighbor classifiers, support vector machines
(SVMs), decision trees, random forests, linear regression, hidden Markov models, and many more.
In this class we’ll look at just two of these: k-nearest neighbor classifiers and random forests. This
only scratches the surface of this exciting area. You can learn more in CS 188 and CS 189.
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Features

Typically, Y is a small set of a few classes. For instance, in boolean classification problems, the
set ) has just two elements: say, ) = {0, 1}.

What might the set X’ look like? We will explore algorithms that work when X =R, i.e., X is the
set of length-d vectors of real numbers.

Of course, in practical applications, our observations might be anything: emails, people, or almost
anything. How do we shoe-horn them into the framework that our algorithms expect? Basically, we
need to a way to map each email/person/etc. to a d-dimensional vector. We do this by identifying
features. Typically, we select d attributes of each observation, or d things that we can measure
about them. Each one is called a feature. Then we map each email/person/etc. to a vector x € R¢,
whose ith coordinate x; denotes the value of the ith feature. For instance, in spam filtering, the first
feature might be the length of the email, the second feature might be the fraction of words that are
mis-spelled, the third feature might be the number of times that the word “Cialis” appears in the
email, and so on.

This allows us to treat each observation as an element of the d-dimensional space R?, or in other
words, as a vector of d real numbers. This transforms our data into a form that can be effectively
exploited by the classification algorithms we’ll see next.

A well-chosen set of features can make the difference between success and failure in practice: it
can often make more difference than the choice of learning algorithm. Unfortunately, selecting a
suitable set of features is an art. It often involves guessing what characteristics of each observation
might be helpful at predicting its class, based on domain expertise and knowledge of the application
setting. In particular, there is no uniform formula or method for selecting a good set of features.

For this class, we’ll assume that you have selected a set of d features and transformed each obser-
vation to a d-vector in R?, so we can take X = RY.

The nearest—neigh]oor classifier

The first classification algorithm we’ll look at is the nearest-neighbor classifier. Intuitively, it is
based on the idea that if x,x are close to each other, then probably they’ll have the same class.

If x,x’ € R? are two length-d vectors, define ||x —x’|| to be the distance between x and x’. For
instance, we might use the Euclidean distance:

[l =[] = (Z(Xi—)é)z> 1/2-

i
We can try other distance measure as well, but the Euclidean distance is a reasonable starting point.

Now the nearest-neighbor classifier classifies the observation x using the following rule:
Let x; be the nearest observation to x. Classify x with the class y;.
In other words, out of all the observations in the training set, we find the one that is closest to x;
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then, we classify x with the same class as its nearest neighbor in the training set. This rule is based
on the intuition that two similar observations will probably belong to the same class.

Formally, given x, we define
i* = argmin ||x — x|,
l

and assign x the class y;«.

Here is one simple algorithm for the nearest-neighbor classifier:

Classify(x):

1. Seti*:=1.

2. Fori:=2,3,...,n:

3. If ||x —x;i|] < |Jx —x;+
4. Return yj-.

,seti*i=1.

The running time of this algorithm is ®(nd), since we do n iterations and each iteration computes
the distance between two length-d vectors, which takes ®(d) time. Note that we need to spend
O(nd) time per new observation that we want to classify. If the training set is large (so n is large),
and if we want to classify many observations, this might be a bit slow. We’ll see later an alternative
algorithm that is more efficient in some cases.

The k—nearest—neigh]aors classifier

The nearest neighbor classifier can be improved by looking at the k closest observations in the
training set.

Given x, we compute the distance from x to each observation in the training set, and then keep the k
closest observations. Intuitively, the class of each of them gives a plausible suggestion for the class
of x. Therefore, we can treat each as a vote for the class of x. We take these k votes, find which
class received the most votes, and classify x with this class. In many applications, this improves
the accuracy of the nearest neighbor classifier by “smoothing” out the classifier’s predictions.

This is called the k-nearest neighbors classifier, or k&-NN for short. You can think of £ as a small
constant, chosen in advance, e.g., k = 5. For boolean classification, it is often convenient to choose
k to be odd, to avoid ties.

One simple way to implement the classifier is to compute the distance from x to each observation
in the training set, and keep the & closest (e.g., using a binary heap of size k). The running time will
be O(n(d +1gk)). For small values of k, this is essentially as fast as the corresponding algorithm
fork=1.

EfEcient classiﬁcation ancl k—d trees

It is possible to use a divide-and-conquer algorithm to speed up classification, if the dimension d
is not too large. In particular, we store the observations in a data structure called a k-d tree. (In our
case, where we have d dimensions, it might make more sense to call it a d-d tree, but k-d tree is
the traditional name.)
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A k-d tree is a way to store a set S of points in R?. It is a binary tree, and, the points in S are stored
in the leaves of the tree. Each internal node in the tree splits the space R¢ into two parts; its left
child contains all the points that fall in the first part, and the right child contains the points in the
second part. To tell whether x is in the tree, we traverse the tree. Each node indicates a particular
dimension (say j, where 1 < j < d) and a threshold (say 7, where t € R). When we reach that node,
we test whether x; <7 (whether the jth coordinate of x is at most 7), and if yes, we move to the
node’s left child, otherwise we move to its right child.

For instance, suppose we are in d = 2 dimensions, so each x value is a pair of real numbers. The
root node might test whether x; < 5. Its left child might test whether x, < 7 and its right child
might test whether x; < 6. This divides the plane into four spaces: {(x1,x2) :x; < 5,x <7},
{(XI,XQ) x1 <5,x > 7}, {(xl,xz) X1 >5,x0 < 6}, and {(Xl,XQ) X > 5,)62 > 6}.

How do we build a k-d tree? We might cycle through the dimensions as we go down the tree. In
other words, each node at depth j might examine the j mod dth coordinate of x. The threshold
might be chosen by looking at the median value of this coordinate, for all the points that are stored
under this node (in one of the leaves that is a descendant of this node). This builds a k-d tree that
is well-balanced: its depth is O(d1gn). Searching in such a tree can thus be done in O(d1gn) time.

k-d trees support efficient nearest neighbor queries. Suppose we are given x and want to find its
nearest neighbor in S, given a k-d tree for S. How do we do that? The trick is to use divide-and-
conquer. Suppose the root node of the k-d tree tests whether x; < ¢, so it splits S into two sets:
S;={seS:s1<t}and S, ={s € S:s1 >1r}. Suppose x; <r. We start by recursively finding x’s
nearest neighbor in S, say y € §;. Now depending on how close x lies to the separating line x; <¢,
we might or might not need to look at anything in S,. We use the fact that the distance from x to
anything in S, must be at least |t —x;|. There are two cases.

o If [|x —y|| < |t —x1|, there is no need to look at anything in S, (because then the distance
from x to anything in S, will be larger than the distance to y), so we can stop searching
immediately.

o If ||[x—y|| > |t —x1|, we recursively find x’s nearest neighbor in S,, say z, and keep whichever
is closer to x, y or z.

This idea allows us to prune the set of points in S: rather than computing the distance from x to
everything in S, it is often possible to compute the distance from x to only a small fraction of the
points in S.

Therefore, k-d trees allow us to speed up classification with nearest-neighbors classifiers. We store
the observations in the training set into a k-d tree (using S = {x1,...,x,}, where xi,...,x, are the
observations) and use it to efficiently find the nearest neighbor to any new observation x. The
divide-and-conquer algorithm sketched above can be generalized to allow finding the k nearest
neighbors.

In practice, k-d trees are often significantly faster than computing the distance to everything in the
training set if the number of dimensions is small enough (d < 20 or so), but when d is too large,
they might not offer any benefit.
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Practical considerations with k-NN c]assiﬂers

Suppose we want to build a model to predict a man’s shoe size (size 7, 8,9, 10, 11, or 12) from their
height and weight. This sounds reasonable—but one challenge is that, because the weight has a
much larger range of values than height, the distance between two observations will be dominated
numerically by the difference between their weights. In other words, the narrow range of heights
will force the height to become essentially irrelevant, due to how the Euclidean distance works.
This is undesirable.

A simple technique to avoid this problem is to normalize all features to have the same range of
values (e.g., [0,1]) before applying k-nearest neighbors. A slightly more sophisticated approach
that is commonly used is to standardize each of the features: we replace the feature value v; (for
the ith feature) with (v; — i) /o, where p is the mean value of the ith feature (among the training
set) and o is the standard deviation of the ith feature (among the training set). This also helps
normalize the features, in a way that is a bit less sensitive to outliers.

In general, k-nearest neighbors will tend to perform worse if the dimension d is too large. There-
fore, it is often to your advantage to avoid adding too many features.
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