CS 170 A]gorithms
Fall 2014 David Wagner HW 5

Due Oct. 3, 6:00pm

Instructions. This homework is due Friday, October 3rd, at 6:00pm electronically. Same rules as for prior
homeworks. See http://www—inst.cs.berkeley.edu/~csl70/fald/hws/instruct.pdf
for the required format for writing up algorithms.

. (10 pts.) Super-long path in a DAG
Design a linear-time algorithm for the following task:

Input: A directed acyclic graph G

Question: Does G contain a directed path that touches every vertex exactly once?

. (20 pts.) Number of shortest paths

Often there are multiple shortest paths (all of the same length) between two nodes of the same graph. Design
an efficient algorithm to count the number of shortest paths from vertex s to vertex ¢ in a directed graph G
(possibly containing cycles; all edges are of length 1).

Hint: throw away some of the edges, then you have a...

. (25 pts.) The farmer and the river

A farmer has a wolf, sheep, and a cabbage. Initially they are all on the west bank of a river; he wants to
transport them all to the east bank of the river. He can carry at most one of them in his boat at a time.
Unfortunately, if he leaves the wolf and the sheep alone on the same bank, the wolf will eat the sheep; if he
leaves the sheep and the cabbage alone, the sheep will eat the cabbage. In each step, the farmer can cross
the river in his boat from west to east or from east to west.

(a) Find a way to get them all to the east bank, in the least number of crossings, by forming a graph and
then doing something with the graph. Draw your graph. How many steps does the shortest solution
require?

(b) How many different such solutions (with that number of crossings) are there?

. (20 pts.) Equality contraints

Here’s a problem that shows up in program analysis. Suppose we have a list of variables x,x2,...,x,
(over the real numbers). We are given some equality constraints, of the form x; = x;, and some disequality
constraints, of the form x; # x;. Design an efficient algorithm to determine whether it is possible to satisfy
them all, when we are given m constraints over n variables.

For instance, the constraints x; = x, x» = X3, X| 7 x3 cannot be simultaneously satisfied, so your algorithm
should output “No” on that input.

. (25 pts.) Telephone keypad entry
Amalgamated Systems Inc. is building flip-phones (so 80’s!) and wants to develop a system to make it easy
for people to enter in text messages via the numeric keypad. The usual solution is to map letters to sequences

CS 170, Fall 2014, HW 5

—_

http://www-inst.cs.berkeley.edu/~cs170/fa14/hws/instruct.pdf

of numbers like this: A=2, B=22, C=222, D=3, E=33, F=333, G=4, etc. However it’s annoying to have to
type such a long sequence of numbers. Their marketing folks have come up with a great ideeﬂ: on their
phone, they’ll use the mapping A=2, B=2, C=2, D=3, E=3, F=3, G=4, etc.

The problem, of course, is that some words are ambiguous. For example, 22737 could represent CARDS,
CAPER, or a number of other English words. The company is counting on you to invent some software
that somehow uses context to infer what the user was typing. Assume that the user will be typing English
sentences, where all of the words are properly spelled. We’ll use the * key to represent a space.

You are given a dictionary of all English words and the frequency of each of them: for each English word
w, we are given p(w), which represents the probability that any particular word will be w (i.e., the rela-
tive frequency of w in English text). You are also given frequency information about which words appear
next to each other: for each pair w,x of English words, we are given p(x|w), which represents the condi-
tional probability that the next word is x, given that the current word is w. For instance, p(THE) is large
(close to 1), because THE is a common word, while p(MALAPROPISM) is small (close to 0), because
MALAPROPISM is rarely used in normal English. p(SKELTER|HELTER) might be very large (close to
1), while p(GIRAFFE|SMIRKING) might be very small (close to 0).

You are given a number sequence, e.g., 4483*63*2*7464. Your goal is to output the sequence of English
words that has the highest total probability. The total probability of a sequence wy,ws,...,w; of words is

pwilwi—1) -+~ p(ws|wa2) p(wa|w1) p(w1).

For any particular number sequence, we can form a directed graph; below we show the graph corresponding
to 4483*63*2*7464. The graph has one source node s and one sink node ¢. The ith level of the graph has
one vertex for each possibility for the ith word, and there is an edge from each vertex at level i to each vertex
at level i + 1. Each path from s to ¢ in the graph below provides a possible decoding of 4483*63*2*7464.

ping

sing

We want to find the path that corresponds to a word sequence whose total probability is highest. In this case,
based upon word statistics, the decoding with the highest probability is GIVE ME A RING.

Design an efficient algorithm to solve the following task:

Input: The directed graph G obtained from the number sequence (e.g., the graph shown above), and the
probabilities p(-) and p(+|-)

Output: The sequence of words wy,wy, ..., w; that maximizes p(wi|wi_1) - - p(w3|wa) p(wa|w1) p(wy), out
of all possible decodings consistent with the graph.

Try to find an algorithm whose running time is O(|V| + |E|). If you cannot find a linear-time algorithm, we
will accept one that is slower by a log-factor.

'Tt’s such a great idea that it’s been deployed in practice, under the name T9.

CS 170, Fall 2014, HW 5 2

6. (5 pts.) Optional bonus problem: Golden graphs
(This is an optional bonus challenge problem. Only solve it if you want an extra challenge.)

Let G = (V,E) be a graph where each edge is labelled with a non-negative length. Suppose we are given a set
E, C E of “golden” edges. We call a path “golden” if at least k of its edges are golden. Let d,(s,?) denote
the length of the shortest golden path from s to . Describe an efficient algorithm to solve the following
problem:

Input: A graph G = (V, E), with non-negative edge lengths ¢(u,v); a set E; C E; and an integer k > 0

Output: dy(s,v) for eachv e V

CS 170, Fall 2014, HW 5 3

