
Operating Systems and The Cloud, Part II:
Search => Cluster Apps => Scalable

Machine Learning

David E. Culler
 CS162 – Operating Systems and Systems Programming

Lecture 40
December 3, 2014

Proj: CP 2 today
Reviews in R&R
Mid3 12/15

The Data Center as a System
•  Clusters became THE architecture for large scale

internet services
–  Distribute disks, files, I/O, net, and compute over

everything
–  Massive AND Incremental scalability

•  Search Engines the initial “Killer App”
•  Multiple components as Cluster Apps

–  Web crawl, Index, Search & Rank, Network, …

•  Global Layer as a Master/Worker pattern
–  GFS, HDFS

•  Map Reduce framework address core of search
on massive scale – and much more

–  Indexing, log analysis, data querying
–  Collating, inverted indexes : map(k,v) => f(k,v),(k,v)
–  Filtering, Parsing, Validation
–  Sorting

12/1/14 UCB CS162 Fa14 L39! 2

Lessons from Giant-Scale Services, Eric Brewer, IEEE Computer, Jul 2001

Research …

12/1/14 UCB CS162 Fa14 L39! 3

The Data Center as a System
•  Clusters became THE architecture for large scale internet

services
–  Distribute disks, files, I/O, net, and compute over everything
–  Massive AND Incremental scalability

•  Search Engines the initial “Killer App”
•  Multiple components as Cluster Apps

–  Web crawl, Index, Search & Rank, Network, …

•  Global Layer as a Master/Worker pattern
–  GFS, HDFS

•  Map Reduce framework address core of search on
massive scale – and much more

–  Indexing, log analysis, data querying
–  Collating, inverted indexes : map(k,v) => f(k,v),(k,v)
–  Filtering, Parsing, Validation
–  Sorting,
–  Graph Processing (???) – page rank,
–  Cross-correlation (???)
–  Machine Learning (???)

12/1/14 UCB CS162 Fa14 L39! 4

Time Travel

•  It’s not just storing it, it’s
what you do with the data

12/1/14 UCB CS162 Fa14 L39! 5

Ion$Stoica$

Making'Sense'of'Big'Data'with'
Algorithms,'Machines'&'People'

UC$BERKELEY$

EECS,$Berkeley$$

AMPLab Unification Philosophy!
Don’t specialize MapReduce – Generalize it!!
Two additions to Hadoop MR can enable all the
models shown earlier!!
!1. General Task DAGs!
!2. Data Sharing!

For Users: !
!Fewer Systems to Use !
!Less Data Movement!

Spark

St
re
am

ing

Gr
ap

hX

…

Sp
ar
kS

QL

M
Lb

as
e

Velox Model Serving	

Tachyon	

Spark	

Streaming	

 SparkSQL	

BlinkDB	

GraphX	

 MLlib	

MLBase	

 SparkR	

Cancer Genomics, Energy Debugging, Smart Buildings	

Sample
Clean	

Apache Spark 	

Berkeley Data Analytics Stack

HDFS, S3,
…	

Apache Mesos	

 Yarn	

 Resource	

Virtualization	

Storage	

Processing	

Engine	

Access and	

Interfaces	

In-house	

Apps	

Tachyon	

12/1/14 UCB CS162 Fa14 L39! 6

The Data Deluge!
•  Billions of users connected through the net!

–  WWW, Facebook, twitter, cell phones, …!
–  80% of the data on FB was produced last year!

•  Clock Rates stalled!
•  Storage getting cheaper!

–  Store more data!!

12/1/14 UCB CS162 Fa14 L39! 7

Data Grows Faster than Moore’s Law!

Projected Growth!

In
cr

ea
se

 o
ve

r 2
01

0!

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015

Moore's Law"

Particle Accel."

DNA Sequencers"

12/1/14 UCB CS162 Fa14 L39! 8

Complex Questions

•  Hard questions
–  What is the impact on traffic and home prices of

building a new ramp?

•  Detect real-time events
–  Is there a cyber attack going on?

•  Open-ended questions
–  How many supernovae happened last year?

12/1/14 UCB CS162 Fa14 L39! 9

MapReduce Pros!
•  Distribution is completely transparent!

–  Not a single line of distributed programming (ease, correctness)!

•  Automatic fault-tolerance!
–  Determinism enables running failed tasks somewhere else again!
–  Saved intermediate data enables just re-running failed reducers!

•  Automatic scaling!
–  As operations as side-effect free, they can be distributed to any number of

machines dynamically!

•  Automatic load-balancing!
–  Move tasks and speculatively execute duplicate copies of slow tasks

(stragglers)!

12/1/14 UCB CS162 Fa14 L39! 10

HDFS – distributed file system

•  Blocks are distributed, with replicas, across nodes
•  Name-node provides the index structure
•  Client locates blocks via RPC to metadata
•  Data nodes inform Namenode of failures through heartbeats
•  Block locations made visible to MapReduce Framework

12/1/14 UCB CS162 Fa14 L39! 11

Master server
•  manages file

systems
namespace

•  Regulates
client access

•  Mapping to
data nodes

MapReduce
•  both a programming model and a clustered

computing system

– A specific pattern of computing over large

distributed data sets

– A system which takes a MapReduce-formulated

problem and executes it on a large cluster

– Hides implementation details, such as hardware

failures, grouping and sorting, scheduling …

Word-Count using MapReduce
Problem: determine the frequency of each word in a

large document collection

General MapReduce Formulation
Map:

–  Preprocesses a set of files to generate intermediate key-value
pairs, in parallel

Group:

–  Partitions intermediate key-value pairs by unique key,
generating a list of all associated values

»  Shuffle so each key list is all on a node

Reduce:
–  For each key, iterate over value list
–  Performs computation that requires context between

iterations
–  Parallelizable amongst different keys, but not within one key

MapReduce Logical Execution

12/1/14 UCB CS162 Fa14 L39! 15

MapReduce Parallel Execution

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MapReduce Parallelization: Pipelining

 •  Fine grain tasks: many more map tasks than machines
–  Better dynamic load balancing
–  Minimizes time for fault recovery
–  Can pipeline the shuffling/grouping while maps are still running

•  Example: 2000 machines -> 200,000 map + 5000 reduce tasks

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime Execution Example
•  The following slides illustrate an example run of

MapReduce on a Google cluster
•  A sample job from the indexing pipeline,

processes ~900 GB of crawled pages

MR Runtime (1 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (2 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (3 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (4 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (5 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (6 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (7 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (8 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

MR Runtime (9 of 9)

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html

Fault Tolerance vis re-execution
•  On Worker Failure:

–  Detect via periodic heartbeats
–  Re-execute completed and in-progress map tasks
–  Re-execute in progress reduce tasks
–  Task completion committed through master

•  Master ???

12/1/14 UCB CS162 Fa14 L39! 28

Admin
•  Project 3
•  Reviews during R&R
•  Mid 3 in Final Exam Group 1 (12/15 8-11)

–  10 Evans (currently)

12/1/14 UCB CS162 Fa14 L39! 29

MapReduce Cons!
•  Restricted programming model!

–  Not always natural to express problems in this model!
–  Low-level coding necessary!
–  Little support for iterative jobs (lots of disk access)!
–  High-latency (batch processing)!

•  Addressed by follow-up research and Apache
projects!

–  Pig and Hive for high-level coding!
–  Spark for iterative and low-latency jobs!

12/1/14 UCB CS162 Fa14 L39! 30

Big Data Ecosystem Evolution

MapReduce

Pregel

Dremel

GraphLab

Storm

Giraph

Drill
 Tez

Impala

S4
 …

Specialized systems

(iterative, interactive and"

streaming apps)

General batch"
processing

AMPLab Unification Philosophy

•  Don’t specialize MapReduce – Generalize it!
•  Two additions to Hadoop MR can enable all the models

shown earlier!
•  1. General Task DAGs
•  2. Data Sharing
•  For Users:
•  Fewer Systems to Use
•  Less Data Movement

Spark

St

re
am

ing

G
ra

ph
X

…

Sp

ar
kS

Q
L

M
Lb

as
e

UCB / Apache Spark Motivation!

Complex jobs, interactive queries and online
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job!

Query 1"

Query 2"

Query 3"

Interactive mining!

Jo
b

1"

Jo
b

2"

…!

Stream processing!

12/1/14 UCB CS162 Fa14 L39! 33

Spark Motivation!
Complex jobs, interactive queries and online
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job!

Query 1"

Query 2"

Query 3"

Interactive mining!

Jo
b

1"

Jo
b

2"

…!

Stream processing!

Problem: in MR, the only way to share data
across jobs is using stable storage  

(e.g. file system) è slow!"

12/1/14 UCB CS162 Fa14 L39! 34

Examples!

iter. 1" iter. 2" . . .!

Input!

HDFS 
read!

HDFS 
write!

HDFS 
read!

HDFS 
write!

Input!

query 1"

query 2"

query 3"

result 1!

result 2!

result 3!

. . .!

HDFS 
read!

Opportunity: DRAM is getting cheaper è use
main memory for intermediate  

results instead of disks"

12/1/14 UCB CS162 Fa14 L39! 35

Velox Model Serving	

Tachyon	

Spark	

Streaming	

 SparkSQL	

BlinkDB	

GraphX	

 MLlib	

MLBase	

 SparkR	

Cancer Genomics, Energy Debugging, Smart Buildings	

Sample
Clean	

Apache Spark 	

Berkeley Data Analytics Stack
(open source software)

HDFS, S3,
…	

Apache Mesos	

 Yarn	

 Resource	

Virtualization	

Storage	

Processing	

Engine	

Access and	

Interfaces	

In-house	

Apps	

Tachyon	

	

In-Memory	

Dataflow	

System	

M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, “Spark: Cluster Computing
with Working Sets, USENIX HotCloud, 2010.

“It’s only September but it’s already clear that 2014 will be
the year of Apache Spark”

 -- Datanami, 9/15/14

Iteration in Map-Reduce

Training	

Data	

Map	

 Reduce	

 Learned	

Model	

w(1)	

w(2)	

w(3)	

w(0)	

Initial	

Model	

Cost of Iteration in Map-Reduce

Map	

 Reduce	

 Learned	

Model	

w(1)	

w(2)	

w(3)	

w(0)	

Initial	

Model	

Training	

Data	

Read 2	

Repeatedly ���
load same data	

Cost of Iteration in Map-Reduce

Map	

 Reduce	

 Learned	

Model	

w(1)	

w(2)	

w(3)	

w(0)	

Initial	

Model	

Training	

Data	

Redundantly save ���
output between ���

stages	

Dataflow View

Training
Data	

(HDFS)	

Map	

Reduce	

Map	

Reduce	

Map	

Reduce	

Memory Opt. Dataflow

Training
Data	

(HDFS)	

Map	

Reduce	

Map	

Reduce	

Map	

Reduce	

Cached	

Load	

Memory Opt. Dataflow View

Training
Data	

(HDFS)	

Map	

Reduce	

Map	

Reduce	

Map	

Reduce	

Efficiently���
move data 	

between ���
stages	

Spark:10-100× faster than Hadoop MapReduce

Resilient Distributed Datasets (RDDs)

•  API: coarse-grained transformations (map, group-by,
join, sort, filter, sample,…) on immutable collections

•  Resilient Distributed Datasets (RDDs)
–  Collections of objects that can be stored in memory or disk across a

cluster
–  Built via parallel transformations (map, filter, …)
–  Automatically rebuilt on failure

•  Rich enough to capture many models:
–  Data flow models: MapReduce, Dryad, SQL, …
–  Specialized models: Pregel, Hama, …

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory
cluster computing, NSDI 2012.

Fault Tolerance with RDDs
RDDs track the series of transformations used to build
them (their lineage)

–  Log one operation to apply to many elements
–  No cost if nothing fails

Enables per-node recomputation of lost data

messages = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func =

_.contains(...)

MappedRDD
func = _.split(…)

Velox Model Serving	

Tachyon	

Spark	

Streaming	

 SparkSQL	

BlinkDB	

GraphX	

 MLlib	

MLBase	

 SparkR	

Cancer Genomics, Energy Debugging, Smart Buildings	

Sample
Clean	

Apache Spark 	

Systems Research as Time Travel …

HDFS, S3,
…	

Apache Mesos	

 Yarn	

 Resource	

Virtualization	

Storage	

Processing	

Engine	

Access and	

Interfaces	

In-house	

Apps	

Tachyon	

12/1/14 UCB CS162 Fa14 L39! 46

