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The Data Center as a System 
•  Clusters became THE architecture for large scale 

internet services 
–  Distribute disks, files, I/O, net, and compute over 

everything 
–  Massive AND Incremental scalability 

•  Search Engines the initial “Killer App” 
•  Multiple components as Cluster Apps 

–  Web crawl, Index, Search & Rank, Network, … 

•  Global Layer as a Master/Worker pattern 
–  GFS, HDFS 

•  Map Reduce framework address core of search 
on massive scale – and much more 

–  Indexing, log analysis, data querying 
–  Collating, inverted indexes : map(k,v) => f(k,v),(k,v) 
–  Filtering, Parsing, Validation 
–  Sorting 
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Lessons from Giant-Scale Services, Eric Brewer, IEEE Computer, Jul 2001   



Research … 
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The Data Center as a System 
•  Clusters became THE architecture for large scale internet 

services 
–  Distribute disks, files, I/O, net, and compute over everything 
–  Massive AND Incremental scalability 

•  Search Engines the initial “Killer App” 
•  Multiple components as Cluster Apps 

–  Web crawl, Index, Search & Rank, Network, … 

•  Global Layer as a Master/Worker pattern 
–  GFS, HDFS 

•  Map Reduce framework address core of search on 
massive scale – and much more 

–  Indexing, log analysis, data querying 
–  Collating, inverted indexes : map(k,v) => f(k,v),(k,v) 
–  Filtering, Parsing, Validation 
–  Sorting, 
–  Graph Processing (???) – page rank,  
–  Cross-correlation (???) 
–  Machine Learning (???) 
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Time Travel 

•  It’s not just storing it, it’s 
what you do with the data 
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AMPLab Unification Philosophy!
Don’t specialize MapReduce – Generalize it!!
Two additions to Hadoop MR can enable all the 
models shown earlier!!
!1. General Task DAGs!
!2. Data Sharing!

For Users: !
!Fewer Systems to Use !
!Less Data Movement!
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The Data Deluge!
•  Billions of users connected through the net!

–  WWW, Facebook, twitter, cell phones, …!
–  80% of the data on FB was produced last year!

•  Clock Rates stalled!
•  Storage getting cheaper!

–  Store more data!!
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Data Grows Faster than Moore’s Law!

Projected Growth!
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Complex Questions 

•  Hard questions 
–  What is the impact on traffic and home prices of 

building a new ramp? 

•  Detect real-time events 
–  Is there a cyber attack going on? 

•  Open-ended questions  
–  How many supernovae happened last year? 
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MapReduce Pros!
•  Distribution is completely transparent!

–  Not a single line of distributed programming (ease, correctness)!

•  Automatic fault-tolerance!
–  Determinism enables running failed tasks somewhere else again!
–  Saved intermediate data enables just re-running failed reducers!

•  Automatic scaling!
–  As operations as side-effect free, they can be distributed to any number of 

machines dynamically!

•  Automatic load-balancing!
–  Move tasks and speculatively execute duplicate copies of slow tasks 

(stragglers)!
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HDFS – distributed file system 

•  Blocks are distributed, with replicas, across nodes 
•  Name-node provides the index structure 
•  Client locates blocks via RPC to metadata 
•  Data nodes inform Namenode of failures through heartbeats 
•  Block locations made visible to MapReduce Framework 
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Master server  
•  manages file 

systems 
namespace 

•  Regulates 
client access 

•  Mapping to 
data nodes 



MapReduce 
•  both a programming model and a clustered 

computing system 

– A specific pattern of computing over large 

distributed data sets 

– A system which takes a MapReduce-formulated 

problem and executes it on a large cluster 

– Hides implementation details, such as hardware 

failures, grouping and sorting, scheduling … 



Word-Count using MapReduce 
Problem: determine the frequency of each word in a 

large document collection 



General MapReduce Formulation 
Map: 

–  Preprocesses a set of files to generate intermediate key-value 
pairs, in parallel 

 
Group: 

–  Partitions intermediate key-value pairs by unique key, 
generating a list of all associated values 

»  Shuffle so each key list is all on a node 

Reduce: 
–  For each key, iterate over value list 
–  Performs computation that requires context between 

iterations 
–  Parallelizable amongst different keys, but not within one key 



MapReduce Logical Execution 
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MapReduce Parallel Execution 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MapReduce Parallelization: Pipelining 

 •  Fine grain tasks: many more map tasks than machines 
–  Better dynamic load balancing 
–  Minimizes time for fault recovery 
–  Can pipeline the shuffling/grouping while maps are still running 

•  Example: 2000 machines  ->  200,000 map + 5000 reduce tasks 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime Execution Example 
•  The following slides illustrate an example run of 

MapReduce on a Google cluster 
•  A sample job from the indexing pipeline, 

processes ~900 GB of crawled pages 



MR Runtime (1 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (2 of 9) 

 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (3 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (4 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (5 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (6 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (7 of 9) 
 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
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MR Runtime (8 of 9) 

 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



MR Runtime (9 of 9) 

 

Shamelessly stolen from Jeff Dean’s OSDI ‘04 presentation  
http://labs.google.com/papers/mapreduce-osdi04-slides/index.html 



Fault Tolerance vis re-execution 
•  On Worker Failure: 

–  Detect via periodic heartbeats 
–  Re-execute completed and in-progress map tasks 
–  Re-execute in progress reduce tasks 
–  Task completion committed through master 

•  Master ??? 
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Admin 
•  Project 3 
•  Reviews during R&R 
•  Mid 3 in Final Exam Group 1 (12/15 8-11) 

–  10 Evans (currently) 
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MapReduce Cons!
•  Restricted programming model!

–  Not always natural to express problems in this model!
–  Low-level coding necessary!
–  Little support for iterative jobs (lots of disk access)!
–  High-latency (batch processing)!

•  Addressed by follow-up research and Apache 
projects!

–  Pig and Hive for high-level coding!
–  Spark for iterative and low-latency jobs!
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Big Data Ecosystem Evolution 
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AMPLab Unification Philosophy 

•  Don’t specialize MapReduce – Generalize it! 
•  Two additions to Hadoop MR can enable all the models 

shown earlier! 
•   1. General Task DAGs 
•   2. Data Sharing 
•  For Users:  
•   Fewer Systems to Use  
•   Less Data Movement 
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UCB / Apache Spark Motivation!

Complex jobs, interactive queries and online 
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!
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Spark Motivation!
Complex jobs, interactive queries and online 
processing all need one thing that MR lacks:!

Efficient primitives for data sharing!
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Problem: in MR, the only way to share data 
across jobs is using stable storage  

(e.g. file system) è slow!"
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Examples!
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M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, “Spark: Cluster Computing 
with Working Sets, USENIX HotCloud, 2010. 

“It’s only September but it’s already clear      that 2014 will be 
the year of Apache Spark” 

  --  Datanami, 9/15/14 



Iteration in Map-Reduce 
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Cost of Iteration in Map-Reduce 
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Cost of Iteration in Map-Reduce 
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Spark:10-100× faster than Hadoop MapReduce




Resilient Distributed Datasets (RDDs) 

•  API:  coarse-grained transformations (map, group-by, 
join, sort, filter, sample,…) on immutable collections 

•  Resilient Distributed Datasets (RDDs) 
–  Collections of objects that can be stored in memory or disk across a 

cluster 
–  Built via parallel transformations (map, filter, …) 
–  Automatically rebuilt on failure 

•  Rich enough to capture many models: 
–  Data flow models: MapReduce, Dryad, SQL, … 
–  Specialized models: Pregel, Hama, … 

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory 
cluster computing, NSDI 2012.  



Fault Tolerance with RDDs 
RDDs track the series of transformations used to build 
them (their lineage) 

–  Log one operation to apply to many elements 
–  No cost if nothing fails 

Enables per-node recomputation of lost data 

 

 

 

 

 

 

 
 
 

messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                         

HadoopRDD 
path = hdfs://… 

FilteredRDD 
func = 

_.contains(...) 

MappedRDD 
func = _.split(…) 
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