Deadlock

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 37
Nov 24, 2014

Reading: OSC Ch 7 (deadlock)

Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource

Hold and wait (incremental allocation)

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads

No preemption

— Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

Circular wait

— e.g, There exists a set{Ty, ..., T} of waiting threads,
T, is waiting for a resource that is held by T,
« T, is waiting for a resource that is held by T,

- T,is waiting for a resource that is held by T,
11/21/14 cs162 fa14 135

Methods for Handling Deadlocks &

» Deadlock prevention: design system to ensure that
it will never enter a deadlock

— E.g., monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

* Allow system to enter deadlock and then recover

— Requires deadlock detection algorithm
- E.g., Java JMX findDeadlockedThreads()

— Some technique for forcibly preempting resources
and/or terminating tasks

* |gnore the problem and hope that deadlocks never
occur in the system
— Used by most operating systems, including UNIX
— Resort to manual version of recovery

11/21/14 cs162 fal4 L35 3

Techniques for Deadlock Prevention

 Eliminate the Shared Resources

— E.g., give each Philosopher two chopsticks, open
the other bridge lane, ...

— Or at least two virtual chopsticks
— OK, if sharing was do to resource limitations

— Not if sharing is due to true interactions

* Must modify Directory Structure AND File Index AND
the Block Free list

* Must enter the intersection to turn left

11/21/14 cs162 fal4 L35 4

Techniques for Deadlock Prevention

 Eliminate the Shared Resources
e Eliminate the Mutual Exclusion

— E.g., many processes can have read-only access to file
— But still need mutual-exclusion for writing

11/21/14 cs162 fal4 L35 5

Techniques for Deadlock Prevention

 Eliminate the Shared Resources
e Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

11/21/14 cs162 fal4 L35 6

* Philosopher grabs for both chopsticks at once
— If not both available, don’t pickup either, try again later

* Phone call signaling attempts to acquire resources all along the path,
“busy” if any point not available

* File Systems: lock {dir. Structure, file index, free list}
— Or the piece of each in a common block group

* Databases: lock all tables touched by the query

 Hard in general, but often natural in specific cases

11/21/14 cs162 fal4 L35 7

Techniques for Deadlock Prevention

* Eliminate the Shared Resources
* Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

* Permit pre-emption

11/21/14 cs162 fal4 L35 8

* Philosopher grabs one, goes for other, if not available, releases the
first
— Analogous for sequence of system resources

e Danger of turning deadlock into livelock
— Everyone is grabbing and releasing, no one every gets two

 Works great at low utilization
— Potential for thrashing (or failure) as utilization increases

e Similar to CSMA (carrier sense multiple access) in networks
 Randomize the back-off

11/21/14 cs162 fal4 L35 9

Techniques for Deadlock Prevention

* Eliminate the Shared Resources
* Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

* Permit pre-emption

 Eliminate the creation of circular wait

— Dedicated resources to break cycles

11/21/14

* Suppose everyone grabs left first

* Acquisition of the right chopstick depends on the
acquisition of the left one

* A cycle of dependences forms

11/21/14 cs162 fal4 L35 11

Ordered Acquisition to prevent cycle fro
forming

e Suppose everyone grabs lowest first
 Dependence graph is acyclic

* Someone will fail to grab chopstick O !

 How do you modify the rule to retain fairness ?

e OS: define ordered set of resource classes
— Acquire locks on resources in order
— Page Table => Memory Blocks => ...

11/21/14 cs162 fal4 L35 12

Deadlock Detection

 There are threads that never become ready
* Are they deadlocked or just ... ?

11/21/14 cs162 fal4 L35 13

A Simple Resource Graph

« System Model

— Asetof Threads T, T,, ..., T,
— Resource types R, R,, .. ., R,
locks in this case
— Each thread utilizes a resource as follows: EI EI
* Request () / Use() / Release() R, R,

* Resource-Allocation Graph:

— V is partitioned into two types:
« T={T,, T,, ..., T}, the set threads in the system.
« R={R,, R,, ..., R}, the set of resource types in system

— owns edge — directed edge T,— R,

— waiter edge — directed edge R, — T,

11/21/14 cs162 fal4 L35 14

v ETN

Ze
N SN

52

-~

Z
N 2
;

Resource Allocation Graph Examples

o [[

I:{3 R3
Simple Resource Deadlocked Resource
Allocation Graph Allocation Graph

11/21/14 cs162 fald L35 15

How would you look for cycles?

11/21/14 cs162 fal4 L35 16

Resource Allocation Graph Examples &3

L [
I:{3
R,
Simple Resource Deadlocked Resource
Allocation Graph Allocation Graph

11/21/14 cs162 fald L35 17

How would avoid cycle creation ?

* On attempt to acquire an owned lock

— Check to see if adding the request edge would
create a cycle

R, R,

R,

11/21/14 cs162 fal4 L35 18

More General Case

* Each resources has a capacity (# instances)

* Each thread requests a portion of each
resource

11/21/14 cs162 fal4 L35 19

General Resource-Allocation Grap

« System Model
—Asetof Threads 7., T,, ..., T Symbols

n
— Resource types R, R,, . . ., R, @ @

CPU cycles, memory space, I/0O devices

. [

— Each resource type R has W instances. EI o
[

— Each thread utilizes a resource as follows: R;
e Request () / Use() / Release() V\‘

* Resource-Allocation Graph:

— V is partitioned into two types:
« T={T,, T,, ..., T}, the set threads in the system.
« R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge T;,— R,

— assignment edge — directed edge R, — T,

11/21/14 cs162 fal4 L35 20

Resource Allocation Graph Examples

e Recall:

— request edge — directed edge T,— R,

J

— assignment edge — directed edge R, — T,

R, R,

R;

Simple Resource
Allocation Graph

11/21/14

Allocation Graph Allocation Graph
With Deadlock With Cycle, but
No Deadlock

cs162 fal4d L35

21

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
» More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of nhon-negative
integers (quantities of resources of each type):

[FreeResources] : Current free resources each type
[Request,] : Current requests from thread X
[Allocy]: Current resources held by thread X
— See if tasks can eventually terminate on greiewh
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true

Foreach node in UNFINISHED {
1f ([Request 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc
done = false
}
}
} until (done)

— Nodes left in UNFINISHED = deadlocked

11/21/14 cs162 fal4 L35 22

node:|

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, .,] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}
}

} until (done)

node]

11/21/14 cs162 fal4 L35

23

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}
do {

done = true False

Foreach node in UNFINISHED {

if ([Request,] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

24

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, .,] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}
}

} until (done)

node]

11/21/14 cs162 fal4 L35

25

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Alloc,,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

26

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T3,T4}
do {
done = true
Foreach node in UNFINISHED {
if ([Request,,] <= [Avail]) {
remove node rrom UNFINSHED
[Avall] = TAvaill] + TAILIocC,,]

done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

27

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4)}

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { E
remove node from UNFINSHED
[AVaIl] = [Avall] T [ATIOC.,] R2
aone = ralse

oo

}

}
} until (done)

11/21/14 cs162 fal4 L35 28

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}
do {
done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) {
remove node from UNFINSHED
[Availl = [Availl + [Alloc

done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

29

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {
done = true

[Foreach node 1n UNFINISHED [|
1t ([Request,] <= [Avail]) {
remove node from UNFINSHED
[Avail] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]

11/21/14 cs162 fal4 L35

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Availl] + [Alloc.,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

31

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {
done = true

[Foreach node 1n UNFINISHED [|
1t ([Request,] <= [Avail]) {
remove node from UNFINSHED
[Avail] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]

11/21/14 cs162 fal4 L35

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,,] <= [Avail]) 1

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

33

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,,] <= [Avail]) {

remove node Irrom UNrINoHEBED

[Avail] = [Avai1l] + [AIToC,,]
done = false

}

}
} until (done)

11/21/14 cs162 fal4 L35

34

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,1]

UNFINISHED = {T1,T3}

ol e

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { H
remove node from UNFINSHED
}

[AVaTT] = [Avail] T [AITOC,] R
=T 2
}

} until (done)

11/21/14 cs162 fal4 L35 35

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,1]

UNFINISHED = {T1,T3}

oo

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { H
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)

11/21/14 cs162 fal4 L35 36

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) {
remove node from UNFINSHED

[Avail] = [Avail] + [Allocq,]
done = false

} False

} L

} until (done)

11/21/14 cs162 fal4 L35

37

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, .,] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]

11/21/14 cs162 fal4 L35

38

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq]
done = false

}

}
} until (done)

11/21/14 cs162 fal4 L35

39

[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

do {

done = true
Foreach node in UNFINISHED {

if ([Request.,] <= [Avail]) {

remove node Irrom UNrINoHEBED

[Avail] = [Availl] + [AIToC,,]
done = false

}

}
} until (done)

11/21/14 cs162 fal4 L35

40

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

® G

done = true
Foreach node in UNFINISHED {
if ([Request;,;] <= [Avail]) { -
remove node from UNFINSHED
}

[AVaTT] = [Avail] T [AITOC.{] R
SoTE——THTSE 2
}

} until (done)

11/21/14 cs162 fal4 L35 41

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

® &

done = true
Foreach node in UNFINISHED {
if ([Request;,;] <= [Avail]) { -
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)

11/21/14 cs162 fal4 L35 42

[Requesty;] = [1,0]
[Request,,] = [0,0]
[Request;;] = [0, 1]
[Request;,] = [0,0]
[Avail] = [1,2]

do {
done = true

; Allocg; = |
; Alloc,, = [
; Allocqgsy = |
; Allocg, = |

| Foreach node 1n UNFINISHED {

1f ([Request

node]

<= [Availl)

remove node from UNFINSHED
[Avail] = [Avail] + [Alloc

done = false

}
}

} until (done)

11/21/14

{

node]

cs162 fal4d L35

43

[Request;] = [1,0]; Allocy; = [0,1
[Request,,] = [0,0]; Alloc,, = [1,0
[Request;;] = [0,1]; Allocy; = [1,0
[Request,,] = [0,0]; Alloc,, = [0,1
[Avail] = [1,2]

do {

done = true
Foreach node in UNFINISHED {

I 1L Request] <= [Availl]) {

remove node rrom UNELINSHED
[Avail] = [Availl] + [Alloc.,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

44

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

UNFINISHED = {}

® &

done = true
Foreach node in UNFINISHED {
1f ([Request.,,] <= [Avail]) { -

I remove node rfrom UNFINSHED | ‘
[Availl] = TAvail] + TAIIoC,, R G
done = false 2
}
}
} until (done)

11/21/14 cs162 fal4 L35 45

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true
Foreach node in UNFINISHED {
if ([Request;;] <= [Avail]) { D
remove node from UNFINSHED
| [AValil] = [Avall] T [AIToC.3] | R,
Qolle — ralse

}

}
} until (done)

11/21/14 cs162 fal4 L35 46

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true
Foreach node in UNFINISHED {
if ([Request;;] <= [Avail]) {
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)

11/21/14 cs162 fal4 L35 47

Y~
7/

4

Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true

Foreach node 1n UNFINISHED | [:::]

1t ([Request,,] <= [Avail]) {
remove node from UNFINSHED
}

(Avail] = [Avail] + [Allocy,] R
done = false 2
}

} until (done)

DONE!

11/21/14 cs162 fal4 L35 48

Banker’s Algorithm for Preventing

Deadlock
 Toward right idea:
— State maximum resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

« Banker’s algorithm (less conservative):

— Allocate resources dynamically

« Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Keeps system in a “SAFE” state, i.e. there exists a sequence
{T,, T,, ... T} with T, requesting all remaining resources,
finishing, then T, requesting all remaining resources, etc..

— Algorithm allows the sum of maximum resource needs
of all current threads to be greater than total resources
L35

11/21/14 cs162 fald

Banker’s Algorithm

« Technique: pretend each request is granted, then run
deadlock detection algorithm, substitute
([Request, 4] < [Avail]) = ([Max, 4]-[AlloC, 4] < [Avail])

[FreeResources]: Current free resources each type
[Alloc,]: Current resources held by thread X
[Max,]: Max resources requested by thread X

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
Foreach node in UNFINISHED {
if ([Maxnode]_[Allocnode]<= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,,.]
done = false

}
} until(done)

11/21/14 cs162 fal4 L35 50

Banker’s Algorithm Example

. U
2% o

/O\
|

« Banker’s algorithm with dining philosophers

— “Safe” (won’t cause deadlock) if when try to grab
chopstick either:
* Not last chopstick

* |s last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don’t allow if:
It's the last one, no one would have k

It’'s 2" to last, and no one would have k-1

It’s 39 to last, and no one would have k-2

11/21/14 cs162 fal4 L35 51

Summary: Deadlock

 Four conditions for deadlocks

— Mutual exclusion
* Only one thread at a time can use a resource

— Hold and wait

« Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption
» Resources are released only voluntarily by the threads
— Circular wait
« dset{T,, ..., T} of threads with a cyclic waiting pattern
« Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

» Deadlock detection and preemption

« Deadlock prevention
— Loop Detection, Banker’s algorithm

11/21/14 cs162 fal

52

