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Consistency Review

* Problem: shared state replicated across multiple
clients, do they see a consistent view?
— Propagation: Writes become visible to reads

— Serializability: The order of writes seen by each
client’s series of reads and writes is consistent with a
total order

* As if all writes and reads had been serviced at a single point
* The total order is not actually generated, but it could be

 Many distributed systems provide weaker
semantics
— Eventual consistency
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In Everyday Life

Where do we meet?

Where do we meet?

Where do we meet?

Where do we meet?

At Nefeli’s At Top Dog
Where do we meet? Where do we meet? Where do we meet?
At Nefeli’s At Nefeli’s At Nefeli’s
At Top Dog At Top Dog At Top Dog

“Wherede-we meet? |

e
At Nefeli’s

\

Where do we meet?

Where do we meet? | —

— At Top Dog

e Alternative: timestamp every write, present entire log
in timestamp order, with tie breaker
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Unfinished Business: Multiple Servers§

Finish Previous Lecture

 What happens if cannot update all the replicas?
* Auvailability => Inconsistency
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Durability and Atomicity

 How do you make sure transaction results
persist in the face of failures (e.g., server
node failures)?

* Replicate store / database
— Commit transaction to each replica

* What happens if you have failures during a
transaction commit?

— Need to ensure atomicity: either transaction is
committed on all replicas or none at all



Two Phase (2PC) Commit

« 2PC is a distributed protocol

* High-level problem statement

— If no node fails and all nodes are ready to
commit, then all nodes COMMIT

— Otherwise ABORT at all nodes

* Developed by Turing award winner Jim
Gray (first Berkeley CS PhD, 1969)



2PC Algorithm

* One coordinator
* N workers (replicas)

* High level algorithm description
— Coordinator asks all workers if they can commit

— If all workers reply “VOTE-COMMIT”, then
coordinator broadcasts “GLOBAL-COMMIT?,

Otherwise coordinator broadcasts “GLOBAL-
ABORT”

— Workers obey the GLOBAL messages



Detailed Algorithm

Coordinator-Algorithm Worker-Algorithm
Coordinator sends VOTE-REQ to all
workers
— Wait for VOTE-REQ from coordinator
— If ready, send VOTE-COMMIT to
coordinator
./ — If not ready, send VOTE-ABORT to
— If receive VOTE-COMMIT from all N coordinator
workers, send GLOBAL-COMMIT to — And immediately abort
all workers

— |f doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-
ABORT to all workers

— |If receive GLOBAL-COMMIT then

commit
— |If receive GLOBAL-ABORT then abort




Failure Free Example Execution

coordinator

VOTE- GLOBAL-
worker 1 REQ COMMIT )
worker 2 \\ / / \\

>
VOTE-
worker 3 COMMIT R

time




State Machine of Coordinator

» Coordinator implements simple state
machine
[ INIT ]

Recv: START
' Send: VOTE-REQ

[ WAIT ]
Recv: VOTE-ABORT Recv: all VOTE-COMMIT
Send: GLOBAL-ABORT Send: GLOBAL-COMMIT
[ ABORT ] [ COMMIT ]




State Machine of Workers

)

Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-AB ' Send: VOTE-COMMIT

[ READY ]
ecv: GLOBAL-ABORT Reecv: GLOBAL-COMMIT

ABORT ] [ COMMIT ]




Dealing with Worker Failures

« How to deal with worker failures?

— Failure only affects states in which the node is waiting
for messages

— Coordinator only waits for votes in “WAIT” state
— In WAIT, if doesn’t receive |

N votes, it times out and sends U INIT ]

GLOBAL-ABORT l Recv: START
' Send: VOTE-REQ

[ WAIT ]
Recv: VOTE-ABORT Recv: VOTE-COMMIT
Send: GLOBAL-AB d: GLOBAL-COMMIT
[ ABORT ] [ COMMIT ]




Example of Worker Failure

INIT

WAIT

G
Ll

coordinator [ABORT] CO'V“V'] timeout

GLOBAL-
VOTE-REQ ABORT
worker 1 N

VOTE-
COMMIT
>

X

worker 3 ]‘ . time

worker 2




Dealing with Coordinator Failure

« How to deal with coordinator failures?

— worker waits for VOTE-REQ in INIT
« Worker can time out and abort (coordinator handles it)
— worker waits for GLOBAL-* message in READY
* |f coordinator fails, workers must
BLOCK waiting for coordinator [ r ]

tor ver an n
O recover a d S€ d Recv: VOTE-REQ Recv: VOTE-REQ

* . )
GLOBAL_* message  Send:VOTE-AB Send: VOTE-COMMIT

[ READY ]
Recv: GLOBAL-ABORT Reev: GLOBAL-COMMIT

ABORT ] [ COMMIT ]




Example of Coordinator Failure #1&
I INIT I

READY

coordinator \ > ABORT COMM

¥, vore s
worker 1 REQ timeout
/ / VOTE-
worker 2 timeout ABO}RT

timeout

worker 3

\ 4



Example of Coordinator Failure #2&&

INTT

A 4
D ——

READY

AN

ABORT COMM

coordinator restarted §
\IOTE REQ /7 \\
worker 1 .
VOTE- GLOBAL-
worker 2 COMMIT BORT

v

block waiting for
worker 3 coordinator

v



Durability

» All nodes use stable storage™ to store which state
they are in

« Upon recovery, it can restore state and resume:
— Coordinator aborts in INIT, WAIT, or ABORT
— Coordinator commits in COMMIT
— Worker aborts in INIT, ABORT
— Worker commits in COMMIT
— Worker asks Coordinator in READY

* - stable storage is non-volatile storage (e.g. backed
by disk) that guarantees atomic writes.



Blocking for Coordinator to Recover

» A worker waiting for global decision
can ask fellow workers about their
state

— |f another worker is in ABORT or
COMMIT state then coordinator must [ INIT ]
have Sent GLOBAL'* Recv: VOTE-REQ

— Thus, worker can safely abort or  send: vOTE-
commit, respectively

Recv: VOTE-REQ
| Send: VOTE-COMMIT

[ READY J

— If another worker is still in INIT state, CV:GLOBWOBAL_COMW
then both workers can decide to

abort ABORT ] [ COMMIT]

— If all workers are in ready, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)



Admin Break

e MidTerm (mult by 4/3)
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What’s a Deadlock?

e Situation where all entities (e.g., threads, clients, ...)
— have acquired certain resources and
— need to acquire additional resources,

— but those additional resources are held some other entity
that won’t release them

11/21/14 cs162 fal4 L35 20



Bridge Crossing/)Z ample

11/21/14

Gob s

Each segment of road can be viewed as a resource
— Car “owns” the segment under them

— Must acquire segment that they are moving into

Must acquire both halves of bridge to cross

— Traffic only in one direction at a time

— Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback)

— Several cars may have to be backed up

Starvation is possible
— East-going traffic really fast = no one goes west

cs162 fal4d L35 21



OS analog of the bridge

» Exclusive Access to Multiple Resouces:

x=1, y=1 Deadlock
Thread A Thread B
x.Down () ; y.Down();\Q;?\\\
y.Down () ; x.Down (); |A: x.Down () ;
B: y.Down () ;
y.Up () ; x.Up(); |A+ y.Down();
%.Up () ; v.Up () ; B: x.Down () ;

* Say, x is free-list and y is directory

11/21/14 cs162 fal4 L35 22



Deadlock vs. Starvation

« Deadlock: circular waiting for resources

— Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

 Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads

 Deadlock = Starvation, but not vice versa
— Starvation can end (but doesn’t have t0)
12114~ Deadlock can’t end withetitiexternal intervention 23



OS analog of the bridge

* Exclusive Access to Multiple Resouces:
x=1, y=1

Thread A Thread B Deadlock
x.Down () ; y.Down () ; ‘TS;\\\\
y.Down () ; x.Down () ; A: x.Down () ;
. | . | B: y.Down () :
y.Up()l X'Up()l A y DOWD.(),
x.Up ()7 y-Up () B: x.Down () ;
* Say, x is free-list and y is directory structure

* Deadlock is typically not deterministic
— Timing in this example has to be “just so”

* Deadlocks occur with multiple resources
— Can’t solve deadlock for each resource independently

11/21/14 cs162 fal4 L35 24



Can this deadlock?

void transaction(account *from, account *to, double amount)

{
acquire(from->lock);
acquire(to->lock);
withdraw(from, amount);
deposit(to, amount);
release(from->lock);
release(to->lock);

e Under what conditions?

11/21/14 cs162 fal4 L35 25



Dining Philosophers Problem

N chopsticks/ N philosophers
— Need two chopsticks to eat
— Free for all: Philosopher will grab any one they can

What if all grab at same time?
— Deadlock!

How to fix deadlock?

— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?

11/21/14 cs162 fal4 L35
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Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource

Hold and wait (incremental allocation)

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads

No preemption

— Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

Circular wait

— e.g, There exists a set{Ty, ..., T} of waiting threads,
T, is waiting for a resource that is held by T,
« T, is waiting for a resource that is held by T,

- T,is waiting for a resource that is held by T,
11/21/14 cs162 fa14 135 57



Methods for Handling Deadlocks &

» Deadlock prevention: design system to ensure that
it will never enter a deadlock

— E.g., monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

» Allow system to enter deadlock and then recover

— Requires deadlock detection algorithm
- E.g., Java JMX findDeadlockedThreads()

— Some technique for forcibly preempting resources
and/or terminating tasks

* |gnore the problem and hope that deadlocks never
occur in the system
— Used by most operating systems, including UNIX
— Resort to manual version of recovery

11/21/14 cs162 fal4 L35 28



Techniques for Deadlock Prevention

 Eliminate the Shared Resources

— E.g., give each Philosopher two chopsticks, open
the other bridge lane, ...

— Or at least two virtual chopsticks
— OK, if sharing was do to resource limitations

— Not if sharing is due to true interactions

* Must modify Directory Structure AND File Index AND
the Block Free list

* Must enter the intersection to turn left

11/21/14 cs162 fal4 L35 29



Techniques for Deadlock Prevention

 Eliminate the Shared Resources
e Eliminate the Mutual Exclusion

— E.g., many processes can have read-only access to file
— But still need mutual-exclusion for writing

11/21/14 cs162 fal4 L35 30



Techniques for Deadlock Prevention

 Eliminate the Shared Resources
e Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

11/21/14 cs162 fal4 L35 31



* Philosopher grabs for both chopsticks at once
— If not both available, don’t pickup either, try again later

* Phone call signaling attempts to acquire resources all along the path,
“busy” if any point not available

* File Systems: lock {dir. Structure, file index, free list}
— Or the piece of each in a common block group

* Databases: lock all tables touched by the query

 Hard in general, but often natural in specific cases
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Techniques for Deadlock Prevention

* Eliminate the Shared Resources
* Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

* Permit pre-emption

11/21/14 cs162 fal4 L35 33



* Philosopher grabs one, goes for other, if not available, releases the
first
— Analogous for sequence of system resources

e Danger of turning deadlock into livelock
— Everyone is grabbing and releasing, no one every gets two

 Works great at low utilization
— Potential for thrashing (or failure) as utilization increases

e Similar to CSMA (carrier sense multiple access) in networks
 Randomize the back-off

11/21/14 cs162 fal4 L35 34



Techniques for Deadlock Prevention

* Eliminate the Shared Resources
* Eliminate the Mutual Exclusion
e Eliminate Hold-and-Wait

* Permit pre-emption

 Eliminate the creation of circular wait

— Dedicated resources to break cycles

11/21/14



* Suppose everyone grabs left first

* Acquisition of the right chopstick depends on the
acquisition of the left one

* A cycle of dependences forms

11/21/14 cs162 fal4 L35 36



Ordered Acquisition to prevent cycle fro
forming

e Suppose everyone grabs lowest first
 Dependence graph is acyclic

* Someone will fail to grab chopstick O !

 How do you modify the rule to retain fairness ?

e OS: define ordered set of resource classes
— Acquire locks on resources in order
— Page Table => Memory Blocks => ...

11/21/14 cs162 fal4 L35 37



Deadlock Detection

 There are threads that never become ready
* Are they deadlocked or just ... ?

11/21/14 cs162 fal4 L35 38



A Simple Resource Graph

« System Model
— Asetof Threads T, T,, ..., T,

n

— Resource types Ry, R,, . . ., R,
locks in this case

— Each thread utilizes a resource as follows: EI EI

* Request () / Use() / Release()

* Resource-Allocation Graph:

— V is partitioned into two types:
« T={T,, T,, ..., T}, the set threads in the system.
- R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge 7,— R;

— assignment edge — directed edge R, — T,

11/21/14 cs162 fal4 L35 39
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Resource Allocation Graph Examples

o [ [

I:{3 R3
Simple Resource Deadlocked Resource
Allocation Graph Allocation Graph
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How would you look for cycles?

11/21/14 cs162 fal4 L35 41



Resource Allocation Graph Examples &3

L [
I:{3
R,
Simple Resource Deadlocked Resource
Allocation Graph Allocation Graph
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How would avoid cycle creation ?

* On attempt to acquire an owned lock

— Check to see if adding the request edge would
create a cycle

R, R,

R,

11/21/14 cs162 fal4 L35 43



More General Case

* Each resources has a capacity (# instances)

* Each thread requests a portion of each
resource

11/21/14 cs162 fal4 L35 44



General Resource-Allocation Grap

« System Model
—Asetof Threads 7., T,, ..., T Symbols

n
— Resource types R, R,, . . ., R, @ @

CPU cycles, memory space, I/0O devices

. [

— Each resource type R has W instances. EI o
[

— Each thread utilizes a resource as follows: R;
e Request () / Use() / Release() V\‘

* Resource-Allocation Graph:

— V is partitioned into two types:
« T={T,, T,, ..., T}, the set threads in the system.
« R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge T;,— R,

— assignment edge — directed edge R, — T,
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Resource Allocation Graph Examples

e Recall:

— request edge — directed edge T,— R,

J

— assignment edge — directed edge R, — T,

R, R,

R;

Simple Resource
Allocation Graph

11/21/14

Allocation Graph Allocation Graph
With Deadlock With Cycle, but
No Deadlock
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Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
» More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of nhon-negative
integers (quantities of resources of each type):

[FreeResources] : Current free resources each type
[Request,] : Current requests from thread X
[Allocy]: Current resources held by thread X
— See if tasks can eventually terminate on greiewh
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true

Foreach node in UNFINISHED {
1f ([Request 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc
done = false
}
}
} until (done)

— Nodes left in UNFINISHED = deadlocked

node:|

11/21/14 cs162 fal4 L35 47



[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, ., ] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}
}

} until (done)

node]

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}
do {

done = true False

Foreach node in UNFINISHED {

if ([Request, ] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, ., ] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}
}

} until (done)

node]

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]

UNFINISHED = {T1,T2,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Alloc,,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [0,0]
UNFINISHED = {T1,T3,T4}
do {
done = true
Foreach node in UNFINISHED {
if ([Request,,] <= [Avail]) {
remove node rrom UNFINSHED
[Avall] = TAvaill] + TAILIocC,,]

done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4)}

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { E
remove node from UNFINSHED
[AVaIl] = [Avall] T [ATIOC.,] R2
aone = ralse

oo

}

}
} until (done)
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}
do {
done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) {
remove node from UNFINSHED
[Availl = [Availl + [Alloc

done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {
done = true

[ Foreach node 1n UNFINISHED [ |
1t ([Request, ] <= [Avail]) {
remove node from UNFINSHED
[Avail] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]

11/21/14 cs162 fal4 L35




[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request, ] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Availl] + [Alloc.,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3, T4}

do {
done = true

[ Foreach node 1n UNFINISHED [ |
1t ([Request, ] <= [Avail]) {
remove node from UNFINSHED
[Avail] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]

11/21/14 cs162 fal4 L35




[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,,] <= [Avail]) 1

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq,]
done = false

}
}

} until (done)

11/21/14 cs162 fal4 L35

58



[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,0]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {

if ([Request,,] <= [Avail]) {

remove node Irrom UNrINoHEBED

[Avail] = [Avai1l] + [AIToC,,]
done = false

}

}
} until (done)

11/21/14 cs162 fal4 L35
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,1]

UNFINISHED = {T1,T3}

ol e

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { H
remove node from UNFINSHED
}

[AVaTT] = [Avail] T [AITOC,] R
=T 2
}

} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy = [0,1] . @
[Avail] = [1,1]

UNFINISHED = {T1,T3}

oo

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) { H
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {
if ([Request,;,] <= [Avail]) {
remove node from UNFINSHED

[Avail] = [Avail] + [Allocq,]
done = false

} False

} L

} until (done)
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {
done = true

Foreach node 1n UNFINISHED |

1t ([Request, ., ] <= [Avail]) {
remove node from UNFINSHED
[Avalil] = [Availl] + [Alloc
done = false

}

}
} until (done)

node]
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

UNFINISHED = {T1,T3}

do {

done = true
Foreach node in UNFINISHED {

if ([Request, ] <= [Avail]) |

remove node rrom UNPFINSHED
[Avail] = [Avail] + [Allocq]
done = false

}

}
} until (done)
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[Request,;] = [1,0]; Allocq; = [0,1]
[Request,,] = [0,0]; Allocg, = [1,0]
[Request,;] = [0,1]; Allocy = [1,0]
[Request,,] = [0,0]; Allocq, = [0,1]
[Avail] = [1,1]

do {

done = true
Foreach node in UNFINISHED {

if ([Request.,] <= [Avail]) {

remove node Irrom UNrINoHEBED

[Avail] = [Availl] + [AIToC,,]
done = false

}

}
} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

® G

done = true
Foreach node in UNFINISHED {
if ([Request;,;] <= [Avail]) { -
remove node from UNFINSHED
}

[AVaTT] = [Avail] T [AITOC.{] R
SoTE——THTSE 2
}

} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

® &

done = true
Foreach node in UNFINISHED {
if ([Request;,;] <= [Avail]) { -
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)
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[Requesty; ] = [1,0]
[Request,,] = [0,0]
[Request;;] = [0, 1]
[Request;,] = [0,0]
[Avail] = [1,2]

do {
done = true

; Allocg; = |
; Alloc,, = [
; Allocqgsy = |
; Allocg, = |

| Foreach node 1n UNFINISHED {

1f ([Request

node]

<= [Availl)

remove node from UNFINSHED
[Avail] = [Avail] + [Alloc

done = false

}
}

} until (done)

11/21/14

{

node]
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[Request; ] = [1,0]; Allocy; = [0,1
[Request,,] = [0,0]; Alloc,, = [1,0
[Request;;] = [0,1]; Allocy; = [1,0
[Request,,] = [0,0]; Alloc,, = [0,1
[Avail] = [1,2]

do {

done = true
Foreach node in UNFINISHED {

I 1L Request ] <= [Availl]) {

remove node rrom UNELINSHED
[Avail] = [Availl] + [Alloc.,]
done = false

}
}

} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [1,2]

UNFINISHED = {}

® &

done = true
Foreach node in UNFINISHED {
1f ([Request.,,] <= [Avail]) { -

I remove node rfrom UNFINSHED | ‘
[Availl] = TAvail] + TAIIoC,, R G
done = false 2
}
}
} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true
Foreach node in UNFINISHED {
if ([Request;;] <= [Avail]) { D
remove node from UNFINSHED
| [AValil] = [Avall] T [AIToC.3] | R,
Qolle — ralse

}

}
} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true
Foreach node in UNFINISHED {
if ([Request;;] <= [Avail]) {
remove node from UNFINSHED
}

[Avail] = [Availl + [Alloc R
done = false 2
}

} until (done)
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Deadlock Detection Algorithm Examplqg;

[Request,;] = [1,0]; Allocq; = [0,1]

[Request,,] = [0,0]; Allocg, = [1,0] R
[Request,yy] = [0,1]1; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocq, = [0,1] @
[Avail] = [2,2] [:::]

UNFINISHED = {}

® ©

done = true

Foreach node 1n UNFINISHED | [:::]

1t ([Request,,] <= [Avail]) {
remove node from UNFINSHED
}

(Avail] = [Avail] + [Allocy,] R
done = false 2
}

} until (done)

DONE!
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Banker’s Algorithm for Preventing

Deadlock
 Toward right idea:
— State maximum resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

« Banker’s algorithm (less conservative):

— Allocate resources dynamically

« Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Keeps system in a “SAFE” state, i.e. there exists a sequence
{T,, T,, ... T} with T, requesting all remaining resources,
finishing, then T, requesting all remaining resources, etc..

— Algorithm allows the sum of maximum resource needs
of all current threads to be greater than total resources
L35 7
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Banker’s Algorithm

« Technique: pretend each request is granted, then run
deadlock detection algorithm, substitute
([Request, 4] < [Avail]) = ([Max, 4]-[AlloC, 4] < [Avail])

[FreeResources]: Current free resources each type
[Alloc,]: Current resources held by thread X
[Max,]: Max resources requested by thread X

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
Foreach node in UNFINISHED {
if ([Maxnode]_[Allocnode]<= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,,.]
done = false

}
} until(done)
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Banker’s Algorithm Example

. U
2% o

/O\
|

« Banker’s algorithm with dining philosophers

— “Safe” (won’t cause deadlock) if when try to grab
chopstick either:
* Not last chopstick

* |s last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don’t allow if:
It's the last one, no one would have k

It’'s 2" to last, and no one would have k-1

It’s 39 to last, and no one would have k-2
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Summary: Deadlock

 Four conditions for deadlocks

— Mutual exclusion
* Only one thread at a time can use a resource

— Hold and wait

« Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption
» Resources are released only voluntarily by the threads
— Circular wait
« dset{T,, ..., T} of threads with a cyclic waiting pattern
« Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

» Deadlock detection and preemption

« Deadlock prevention
— Loop Detection, Banker’s algorithm
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