
Consistency

David E. Culler
 CS162 – Operating Systems and Systems Programming

http://cs162.eecs.berkeley.edu/
Lecture 35

Nov 19, 2014

Read:

Recap: TCP Flow Control!

LastByteAcked(200)!

Sending Process!

LastByteRead(100)!

Receiving Process!

LastByteWritten(350)!

 NextByteExpected(201)!LastByteRcvd(350)!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)!

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)!

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)!

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)!

Summary: Reliability & Flow Control!

•  Flow control: three pairs of producer consumers!
–  Sending process à sending TCP!
–  Sending TCP à receiving TCP!
–  Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new
data the receiver can buffer!

•  SenderWindow: specifies how more the sender
can transmit.!

•  Depends on AdvertisedWindow and on data sent since
sender received AdvertisedWindow!

•  WriteWindow: How much more the sending
application can send to the sending OS!

Discussion!
•  Why not have a huge buffer at the receiver

(memory is cheap!)?

•  Sending window (SndWnd) also depends on
network congestion

–  Congestion control: ensure that a fast sender doesn’t
overwhelm a router in the network

–  discussed in detail in CS168

•  In practice there is other sets of buffers in the

protocol stack, at the link layer (i.e., Network
Interface Card)

Internet Layering – engineering for
intelligence and change!

101010100110101110!

Transport
Layer !

Trans.
Hdr.

Network
Layer !

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer !

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer !

Data!

Data!

Data!

Data!
Application

Layer
Any distributed protocol!
(e.g., HTTP, Skype, p2p, !
 KV protocol in your project)!

Send bits to other node directly !
connected to same physical !
network!

Send frames to other node !
directly connected to same !
physical network!
!

Send packets to another node !
possibly located in a different !
network!
!

Send segments to another!
process running on same or!
different node!

The Shared Storage Abstraction
•  Information (and therefore control) is

communicated from one point of computation to
another by

–  The former storing/writing/sending to a location in a shared
address space

–  And the second later loading/reading/receiving the contents
of that location

•  Memory (address) space of a process
•  File systems
•  Dropbox, …
•  Google Docs, …
•  Facebook, …

11/12/14 UCB CS162 Fa14 L32! 6

What are you assuming?
•  Writes happen

–  Eventually a write will become visible to readers
–  Until another write happens to that location

•  Within a sequential thread, a read following a
write returns the value written by that write

–  Dependences are respected
–  Here a control dependence
–  Each read returns the most recent value written to the

location

11/12/14 UCB CS162 Fa14 L32! 7

For example

11/12/14 UCB CS162 Fa14 L32! 8

Write: A := 162

Read: print(A)

Read: print(A)

What are you assuming?
•  Writes happen

–  Eventually a write will become visible to readers
–  Until another write happens to that location

•  Within a sequential thread, a read following a
write returns the value written by that write

–  Dependences are respected
–  Here a control dependence
–  Each read returns the most recent value written to the

location

•  A sequence of writes will be visible in order
–  Control dependences
–  Data dependences

11/12/14 UCB CS162 Fa14 L32! 9

For example

11/12/14 UCB CS162 Fa14 L32! 10

Write: A := 162

Read: print(A)

Read: print(A)

Write: A := A + 1

162, 163, 170, 171, …

162, 163, 170, 164, 171, …

What are you assuming?
•  Writes happen

–  Eventually a write will become visible to readers
–  Until another write happens to that location

•  Within a sequential thread, a read following a write
returns the value written by that write

–  Dependences are respected
–  Here a control dependence
–  Each read returns the most recent value written to the location

•  A sequence of writes will be visible in order
–  Control dependences
–  Data dependences
–  May not see every write, but the ones seen are consistent with

order written

•  A readers see a consistent order
–  It is as if the total order was visible to all and they took samples

11/12/14 UCB CS162 Fa14 L32! 11

For example

11/12/14 UCB CS162 Fa14 L32! 12

Write: A := 162

Read: print(A)

Read: print(A)

Write: A := A + 1
Read: print(A)

162, 163, 170, 171, …

164, 170, 186, …

Demo
•  https://docs.google.com/a/berkeley.edu/

spreadsheets/d/
1INjjYqUnFurPLKnnWrexx09Ww5LS5BhNxKt3Bo
JY6Eg/edit

11/12/14 UCB CS162 Fa14 L32! 13

For example

11/12/14 UCB CS162 Fa14 L32! 14

 A := 162

Write: A := 199

Read: print(A)

162, 199, 199, 61, 61 …

Write: A := 61

162, 61, 199, …

61, 199, …
162, 199, 61, 199 …

For example

11/12/14 UCB CS162 Fa14 L32! 15

 A := 162

Write: A := 199

Read: print(A)

162, 199, 199, 61, 61 …

Write: A := 61

162, 199, 61, …

162, 61, …

162, 61, 199, …

Read: print(A)

What is the key to performance AND
reliability

•  Replication

11/12/14 UCB CS162 Fa14 L32! 16

What is the source of inconsistency?

•  Replication

11/12/14 UCB CS162 Fa14 L32! 17

Any Storage Abstraction

11/12/14 UCB CS162 Fa14 L32! 18

Client

Storage
Server

Processor

Memory

Process
Address Space

File System

NFS Client

NFS Server

Browser

Server

Multiple Clients access server: OK

•  But slow

11/12/14 UCB CS162 Fa14 L32! 19

Client

Storage
Server

Client Client

Multi-level Storage Hierarchy: OK

11/12/14 UCB CS162 Fa14 L32! 20

Client

Storage
Server

Cache

•  Replication within storage hierarchy to make it
fast

Multiple Clients and Multi-Level

11/12/14 UCB CS162 Fa14 L32! 21

Client

Storage
Server

Cache

•  Fast, but not OK

Client

Cache

Client

Cache

Multiple Servers

•  What happens if cannot update all the replicas?
•  Availability => Inconsistency

11/12/14 UCB CS162 Fa14 L32! 22

Client

Storage
Server

Storage
Server

Basic solution to multiple client
replicas
•  Enforce single-writer multiple reader discipline
•  Allow readers to cache copies
•  Before an update is performed, writer must gain

exclusive access
•  Simple Approach: invalidate all the copies then

update
•  Who keeps track of what?

11/12/14 UCB CS162 Fa14 L32! 23

The Multi-processor/Core case

11/12/14 UCB CS162 Fa14 L32! 24

Proc

Memory

Cache

•  Interconnect is a broadcast medium
•  All clients can observe all writes and invalidate

local replicas (write-thru invalidate protocol)

Proc

Cache

Proc

Cache

The Multi-processor/Core case

11/12/14 UCB CS162 Fa14 L32! 25

Proc

Memory

Cache

•  Write-Back via read-exclusive
•  Atomic Read-modify-write

Proc

Cache

Proc

Cache

NFS “Eventual” Consistency

11/12/14 UCB CS162 Fa14 L32! 26

Client

Storage
Server

Cache

•  Stateless server allows multiple cached copies
–  Files written locally (at own risk)

•  Update Visibility by “flush on close”
•  GetAttributes on file ops to check modify since cache

Client

Cache

Client

Cache

Flush on Close

GetAttr on files

Other Options
•  Server can keep a “directory” of cached copies
•  On update, sends invalidate to clients holding

copies
•  Or can send updates to clients
•  Pros and Cons ???

•  OS Consistency = Architecture Coherence
requires invalidate copies prior to write

•  Write buffer has be to be treated as primary copy
–  like transaction log

11/12/14 UCB CS162 Fa14 L32! 27

Multiple Servers

•  What happens if cannot update all the replicas?
•  Availability => Inconsistency

11/12/14 UCB CS162 Fa14 L32! 28

Client

Storage
Server

Storage
Server

Durability and Atomicity!
•  How do you make sure transaction results

persist in the face of failures (e.g., server node
failures)? !

•  Replicate store / database!
–  Commit transaction to each replica!

•  What happens if you have failures during a
transaction commit?!

–  Need to ensure atomicity: either transaction is committed on
all replicas or none at all!

Two Phase (2PC) Commit!
•  2PC is a distributed protocol!

•  High-level problem statement!
–  If no node fails and all nodes are ready to commit, then all

nodes COMMIT!
–  Otherwise ABORT at all nodes!

!

•  Developed by Turing award winner Jim Gray
(first Berkeley CS PhD, 1969)!

!

2PC Algorithm!
•  One coordinator !
•  N workers (replicas) !

•  High level algorithm description!
–  Coordinator asks all workers if they can commit!

–  If all workers reply “VOTE-COMMIT”, then coordinator
broadcasts “GLOBAL-COMMIT”, !

!Otherwise coordinator broadcasts “GLOBAL-ABORT”!
–  Workers obey the GLOBAL messages!

Detailed Algorithm!

Coordinator	
 sends	
 VOTE-­‐REQ	
 to	
 all	

workers	

–  Wait	
 for	
 VOTE-­‐REQ	
 from	
 coordinator	

–  If	
 ready,	
 send	
 VOTE-­‐COMMIT	
 to	

coordinator	

–  If	
 not	
 ready,	
 send	
 VOTE-­‐ABORT	
 to	

coordinator	

–  And	
 immediately	
 abort	

–  If	
 receive	
 VOTE-­‐COMMIT	
 from	
 all	
 N	

workers,	
 send	
 GLOBAL-­‐COMMIT	
 to	

all	
 workers	

–  If	
 doesn’t	
 receive	
 VOTE-­‐COMMIT	

from	
 all	
 N	
 workers,	
 send	
 GLOBAL-­‐
ABORT	
 to	
 all	
 workers	

–  If	
 receive	
 GLOBAL-­‐COMMIT	
 then	

commit	

–  If	
 receive	
 GLOBAL-­‐ABORT	
 then	
 abort	

Coordinator Algorithm! Worker Algorithm!

Failure Free Example Execution!

coordinator	

worker	
 1	

.me	

VOTE-­‐
REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
COMMIT	

worker	
 2	

worker	
 3	

State Machine of Coordinator!

•  Coordinator implements simple state machine!

INIT	

WAIT	

ABORT	
 COMMIT	

Recv:	
 START	

Send:	
 VOTE-­‐REQ	

Recv:	
 VOTE-­‐ABORT	

Send:	
 GLOBAL-­‐ABORT	

Recv:	
 VOTE-­‐COMMIT	

Send:	
 GLOBAL-­‐COMMIT	

State Machine of Workers!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

Dealing with Worker Failures!
•  How to deal with worker failures?!

–  Failure only affects states in which the node is waiting for
messages!

–  Coordinator only waits for votes in “WAIT” state!
–  In WAIT, if doesn’t receive !
!N votes, it times out and sends!
!GLOBAL-ABORT! INIT	

WAIT	

ABORT	
 COMMIT	

Recv:	
 START	

Send:	
 VOTE-­‐REQ	

Recv:	
 VOTE-­‐ABORT	

Send:	
 GLOBAL-­‐ABORT	

Recv:	
 VOTE-­‐COMMIT	

Send:	
 GLOBAL-­‐COMMIT	

Example of Worker Failure!

coordinator	

worker	
 1	

.me	

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

GLOBAL-­‐
ABORT	

INIT	

WAIT	

ABORT	
 COMM	
 .meout	

worker	
 2	

worker	
 3	

Dealing with Coordinator Failure!
•  How to deal with coordinator failures?!

–  worker waits for VOTE-REQ in INIT!
»  Worker can time out and abort (coordinator handles it)!

–  worker waits for GLOBAL-* message in READY!
»  If coordinator fails, workers must!
!BLOCK waiting for coordinator!
!to recover and send!
!GLOBAL_* message!

!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

Example of Coordinator Failure #1!

coordinator	

worker	
 1	

VOTE-­‐
REQ	

VOTE-­‐
ABORT	

.meout	

INIT	

READY	

ABORT	
 COMM	

.meout	

.meout	

worker	
 2	

worker	
 3	

Example of Coordinator Failure #2!

VOTE-­‐REQ	

VOTE-­‐
COMMIT	

INIT	

READY	

ABORT	
 COMM	

block	
 wai.ng	
 for	

coordinator	

restarted	

GLOBAL-­‐
ABORT	

coordinator	

worker	
 1	

worker	
 2	

worker	
 3	

Durability!
•  All nodes use stable storage* to store which state they

are in!

•  Upon recovery, it can restore state and resume:!
–  Coordinator aborts in INIT, WAIT, or ABORT!
–  Coordinator commits in COMMIT!
–  Worker aborts in INIT, ABORT!
–  Worker commits in COMMIT!
–  Worker asks Coordinator in READY!

* - stable storage is non-volatile storage (e.g. backed by
disk) that guarantees atomic writes. !

Blocking for Coordinator to Recover
•  A worker waiting for global

decision can ask fellow workers
about their state!

–  If another worker is in ABORT or COMMIT
state then coordinator must have sent
GLOBAL-*!

–  Thus, worker can safely abort or commit,
respectively!

–  If another worker is still in INIT state!
!then both workers can decide to abort !

–  If all workers are in ready, need to BLOCK
(don’t know if coordinator wanted to abort
or commit)!

INIT	

READY	

ABORT	
 COMMIT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐ABORT	

Recv:	
 VOTE-­‐REQ	

Send:	
 VOTE-­‐COMMIT	

Recv:	
 GLOBAL-­‐ABORT	
 Recv:	
 GLOBAL-­‐COMMIT	

