
End2End Design – The Internet
Architecture

David E. Culler
 CS162 – Operating Systems and Systems Programming

http://cs162.eecs.berkeley.edu/
Lecture 32

Nov 12, 2014

Read: end-2-end
HW 5: Due today
Mid 2: 11/14
Proj 3: due 12/8

The E2E Concept
•  Traditional Engineering Goal: design the

infrastructure to meet application requirements
–  Optimizing for Cost, Reliability, Performance, …

•  Challenge: infrastructure is most costly & difficult to
create and evolves most slowly

–  Applications evolve rapidly, as does technology

•  End-to-end Design Concept
–  Utilize intelligence at the point of application
–  Infrastructure need not meet all application requirements directly
–  Only what the end-points cannot reasonably do themselves

»  Avoid redundancy, semantic mismatch, …
–  Enable applications and incorporate technological advance

•  Design for Change! - and specialization
–  Layers & protocols

11/12/14 UCB CS162 Fa14 L32! 2

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the
implementation!

•  Q3: True _ False _ Layering helps to improve
application performance!

•  Q4: True _ False _ “Best Effort” packet delivery
ensures that packets are delivered in order!

•  Q5: True _ False _ In p2p systems a node is both a
client and a server!

•  Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time !

!
!

Review: Protocols!

11/12/14 UCB CS162 Fa14 L32! 3

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the
implementation!

•  Q3: True _ False _ Layering helps to improve
application performance!

•  Q4: True _ False _ “Best Effort” packet delivery
ensures that packets are delivered in order!

•  Q5: True _ False _ In p2p systems a node is both a
client and a server!

•  Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time !

!
!

Review: Protocols!
X!

X!

X!

X!

X!

X!

11/12/14 UCB CS162 Fa14 L32! 4

The Internet Hourglass!

Data Link"

Physical"

Applications"

The Hourglass Model!

Waist"

There is just one network-layer protocol, IP"
The “narrow waist” facilitates interoperability"

SMTP" HTTP" NTP"DNS"

TCP" UDP"

IP"

Ethernet" SONET" 802.11"

Transport"

Fiber"Copper" Radio"

11/12/14 UCB CS162 Fa14 L32! 5

Internet Protocol (IP)!
•  Internet Protocol: Internet’s network layer!
•  Service it provides: “Best-Effort” Packet Delivery!

–  Tries it’s “best” to deliver packet to its destination !
–  Packets may be lost!
–  Packets may be corrupted!
–  Packets may be delivered out of order!

source" destination"

IP network"

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 6

Internet Architecture: The Five Layers!

•  Lower three layers implemented everywhere!
•  Top two layers implemented only at hosts!
•  Logically, layers interacts with peer’s

corresponding layer!

Transport!
Network!
Datalink!
Physical!

Transport!
Network!
Datalink!
Physical!

Network!
Datalink!
Physical!

Application! Application!

Host A! Host B!Router!

11/12/14 UCB CS162 Fa14 L32! 7

Physical Communication!
•  Communication goes down to physical network!
•  Then from network peer to peer!
•  Then up to relevant layer!

Transport!
Network!
Datalink!
Physical!

Transport!
Network!
Datalink!
Physical!

Network!
Datalink!
Physical!

Application! Application!

Host A! Host B!Router!

11/12/14 UCB CS162 Fa14 L32! 8

Implications of Hourglass!

Single Internet-layer module (IP):!
•  Allows arbitrary networks to interoperate!

–  Any network technology that supports IP can exchange packets!

•  Allows applications to function on all networks!
–  Applications that can run on IP can use any network!

•  Supports simultaneous innovations above and
below IP!

–  But changing IP itself, i.e., IPv6 is very complicated and slow!

11/12/14 UCB CS162 Fa14 L32! 9

Layering: Packets in Envelopes!

101010100110101110"
Physical

Layer "
Physical

Layer "101010100110101110"

Datalink
Layer "

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer "

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr. Data" Data"

Network
Layer "

Trans.
Hdr.

Net.
Hdr.

Network
Layer "

Trans.
Hdr.

Net.
Hdr. Data" Data"

Transport
Layer "

Trans.
Hdr.

Transport
Layer "

Trans.
Hdr. Data" Data"

Data"
Application

Layer
Application

Layer Data"

11/12/14 UCB CS162 Fa14 L32! 10

Transport Layer (4)!
•  Service:!

–  Provide end-to-end communication between processes!
– Demultiplexing of communication between hosts!
–  Possible other services:!

»  Reliability in the presence of errors!
»  Timing properties!
»  Rate adaption (flow-control, congestion control)!

•  Interface: send message to “specific process” at
given destination; local process receives
messages sent to it!

–  How are they named?!

•  Protocol: port numbers, perhaps implement
reliability, flow control, packetization of large
messages, framing!

•  Prime Examples: TCP and UDP!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 11

Internet Transport Protocols!
•  Datagram service (UDP)!

–  No-frills extension of “best-effort” IP!
–  Multiplexing/Demultiplexing among processes!

•  Reliable, in-order delivery (TCP)!
–  Connection set-up & tear-down!
–  Discarding corrupted packets (segments)!
–  Retransmission of lost packets (segments)!
–  Flow control!
–  Congestion control!

•  Services not available!
–  Delay and/or bandwidth guarantees!
–  Sessions that survive change-of-IP-address!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 12

Application Layer (7 - not 5!)!
•  Service: any service provided to the end user!
•  Interface: depends on the application!
•  Protocol: depends on the application!

•  Examples: Skype, SMTP (email), HTTP (Web),
Halo, BitTorrent …!

•  What happened to layers 5 & 6?!
–  “Session” and “Presentation” layers!
–  Part of OSI architecture, but not Internet architecture!
–  Their functionality is provided by application layer!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

11/12/14 UCB CS162 Fa14 L32! 13

Socket API!
•  Base level Network programming interface!

!

Socket!
API!

TCP" UDP"

IP"

Application!

Transport!

Network !

11/12/14 UCB CS162 Fa14 L32! 14

BSD Socket API!
•  Created at UC Berkeley (1980s)

•  Most popular network API

•  Ported to various OSes, various languages
–  Windows Winsock, BSD, OS X, Linux, Solaris, …
–  Socket modules in Java, Python, Perl, …

•  Similar to Unix file I/O API
–  In the form of file descriptor (sort of handle).
–  Can share same read()/write()/close() system calls

11/12/14 UCB CS162 Fa14 L32! 15

TCP: Transport Control Protocol!
•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary
length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion and flow control!

•  Application examples: file transfer, chat, http!

11/12/14 UCB CS162 Fa14 L32! 16

TCP Service!
1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from  
(IPa, TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

11/12/14 UCB CS162 Fa14 L32! 17

Connecting Communication to
Processes

11/12/14 UCB CS162 Fa14 L32! 18

Recall: Sockets

11/12/14 UCB CS162 Fa14 L32! 19

Request'Response'Protocol'

9/10/14' cs162'fa14'L5' 6'

write(rqfd, rqbuf, buflen); '

n = read(rfd,rbuf,rmax); '

Client'(issues'requests)' Server'(performs'operaAons)'

requests'

responses'

write(wfd, respbuf, len); '

n = read(resfd,resbuf,resmax); '

service'request'wait'

Recall: Socket creation and connection
•  File systems provide a collection of permanent

objects in structured name space
–  Processes open, read/write/close them
–  Files exist independent of the processes

•  Sockets provide a means for processes to
communicate (transfer data) to other processes.

•  Creation and connection is more complex
•  Form 2-way pipes between processes

–  Possibly worlds away

11/12/14 UCB CS162 Fa14 L32! 20

Recall: Sockets in concept

11/12/14 UCB CS162 Fa14 L32! 21

Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

Accept connection

read request

Connection Socket
write request

write response

Client Protocol

11/12/14 UCB CS162 Fa14 L32! 22

char *hostname;!
int sockfd, portno;!
struct sockaddr_in serv_addr;!
struct hostent *server;!
!
server = buildServerAddr(&serv_addr, hostname, portno);!
!
/* Create a TCP socket */!
sockfd = socket(AF_INET, SOCK_STREAM, 0)!
!
/* Connect to server on port */!
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)!
printf("Connected to %s:%d\n",server->h_name, portno);!
!
/* Carry out Client-Server protocol */!
client(sockfd);!
!
/* Clean up on termination */!
close(sockfd);!

Server Protocol (v1)

11/12/14 UCB CS162 Fa14 L32! 23

/* Create Socket to receive requests*/!
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);!
!
/* Bind socket to port */!
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));!
while (1) {!
/* Listen for incoming connections */!
 listen(lstnsockfd, MAXQUEUE); !
!
/* Accept incoming connection, obtaining a new socket for it */!
 consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr, !
 &clilen);!
!
 server(consockfd);!
!
 close(consockfd);!
 }!
close(lstnsockfd);!

Sockets in concept: fork

11/12/14 UCB CS162 Fa14 L32! 24

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Accept connection

read request

write response

Close Connection
Socket

Close Server Socket

Connection Socket child

Close Connection
Socket

Close Listen Socket
Parent

Wait for child

Server Protocol (v2)

11/12/14 UCB CS162 Fa14 L32! 25

while (1) {!
 listen(lstnsockfd, MAXQUEUE); !
 consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,!

! ! ! ! ! ! ! &clilen);!
 cpid = fork(); /* new process for connection */!
 if (cpid > 0) { /* parent process */!
 close(consockfd);!
 tcpid = wait(&cstatus);!
 } else if (cpid == 0) { /* child process */!
 close(lstnsockfd); /* let go of listen socket */!
!
 server(consockfd);!
!
 close(consockfd);!
 exit(EXIT_SUCCESS); /* exit child normally */!
 }!
 }!
close(lstnsockfd);!

Open Connection: 3-Way Handshaking!

•  Goal: agree on a set of parameters, i.e., the start
sequence number for each side!

– Starting sequence number: sequence of first byte in
stream !

–  Starting sequence numbers are random!

11/12/14 UCB CS162 Fa14 L32! 26

Open Connection: 3-Way Handshaking!
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains

server’s IP address and port number !
–  OS sends a special packet (SYN) containing a proposal for first sequence

number, x!

Client (initiator)! Server!

SYN, SeqNum = x!

Active  
Open"

Passive  
Open"

connect()! listen()!

tim
e"

11/12/14 UCB CS162 Fa14 L32! 27

Open Connection: 3-Way Handshaking!
•  If it has enough resources, server calls accept() to accept

connection, and sends back a SYN ACK packet containing!
–  Client’s sequence number incremented by one, (x + 1)!

»  Why is this needed? !
–  A sequence number proposal, y, for first byte server will send!

Client (initiator)! Server!

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!

ACK, Ack = y + 1!

Active  
Open"

Passive  
Open"

connect()! listen()!

accept()!

allocate  
buffer space!

tim
e"

11/12/14 UCB CS162 Fa14 L32! 28

3-Way Handshaking (cont’d) !

•  Three-way handshake adds 1 RTT delay !

•  Why?!
–  Congestion control: SYN (40 byte) acts as cheap probe!
–  Protects against delayed packets from other connection (would

confuse receiver)!

11/12/14 UCB CS162 Fa14 L32! 29

Close Connection!
•  Goal: both sides agree to close the

connection!
•  4-way connection tear down!

FIN!
FIN ACK!

FIN!
FIN ACK!

Host 1! Host 2!

Can retransmit FIN ACK  
 if it is lost!

tim
eo

ut
!

closed!

close!

close!

closed!

data!

11/12/14 UCB CS162 Fa14 L32! 30

Reliable Transfer!
•  Retransmit missing packets!

–  Numbering of packets and ACKs!

•  Do this efficiently!
–  Keep transmitting whenever possible!
–  Detect missing packets and retransmit quickly!

•  Two schemes!
–  Stop & Wait!
–  Sliding Window (Go-back-n and Selective Repeat)!

11/12/14 UCB CS162 Fa14 L32! 31

Detecting Packet Loss?!
•  Timeouts!

–  Sender timeouts on not receiving ACK!

•  Missing ACKs!
–  Receiver ACKs each packet!
–  Sender detects a missing packet when seeing a gap in the

sequence of ACKs!
–  Need to be careful! Packets and ACKs might be reordered!

•  NACK: Negative ACK!
–  Receiver sends a NACK specifying a packet it is missing!

11/12/14 UCB CS162 Fa14 L32! 32

Stop & Wait w/o Errors!
•  Send; wait for ack; repeat!
•  RTT: Round Trip Time (RTT): time it takes a packet to

travel from sender to receiver and back!
–  One-way latency (d): one way delay from sender and receiver !

ACK 1

Time

Sender Receiver
1"

2"

ACK 2

3"

RTT

RTT

RTT = 2*d "
(if latency is "
 symmetric)"

d

11/12/14 UCB CS162 Fa14 L32! 33

Stop & Wait w/o Errors!
•  How many packets can you send?!
•  1 packet / RTT!
•  Throughput: number of bits delivered to receiver per

sec!

ACK 1

Time

Sender Receiver
1"

2"

ACK 2

3"

RTT

RTT

11/12/14 UCB CS162 Fa14 L32! 34

Stop & Wait w/o Errors!
•  Say, RTT = 100ms !
•  1 packet = 1500 bytes!
•  Throughput = 1500*8bits/0.1s = 120 Kbps !

ACK 1

Time

Sender Receiver
1"

2"

ACK 2

3"

RTT

RTT

11/12/14 UCB CS162 Fa14 L32! 35

Stop & Wait w/o Errors!
•  Can be highly inefficient for high capacity links!
•  Throughput doesn’t depend on the network capacity à

even if capacity is 1Gbps, we can only send 120 Kbps!!

ACK 1

Time

Sender Receiver
1"

2"

ACK 2

3"

RTT

RTT

11/12/14 UCB CS162 Fa14 L32! 36

Stop & Wait with Errors!
•  If a loss wait for a retransmission timeout and

retransmit!
•  How do you pick the timeout?!

ACK 1

Time

Sender Receiver
1"

RTT

timeout 1"

11/12/14 UCB CS162 Fa14 L32! 37

Sliding Window!
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size"

•  Assume window size is n!

•  Let A be the last ACK’d packet of sender without
gap; then window of sender = {A+1, A+2, …, A+n}  

! !!
•  Sender can send packets in its window 

! !!
•  Let B be the last received packet without gap by

receiver, then window of receiver = {B+1,…, B+n}  
! !!

•  Receiver can accept out of sequence, if in window!

11/12/14 UCB CS162 Fa14 L32! 38

Sliding Window w/o Errors!
•  Throughput = W*packet_size/RTT

Time"

Window size (W) = 3 packets"

Sender" Receiver"

1"{1}"
2"{1, 2}"
3"{1, 2, 3}"
4"{2, 3, 4}"
5"{3, 4, 5}"

Unacked packets "
in sender’s window"

Out-o-seq packets"
in receiver’s window"

{}"

6"{4, 5, 6}"
."
."
."

."

."

."

{}"
{}"

11/12/14 UCB CS162 Fa14 L32! 39

Example: Sliding Window w/o Errors!
•  Assume !

–  Link capacity, C = 1Gbps!
–  Latency between end-hosts, RTT = 80ms!
–  packet_length = 1000 bytes !

•  What is the window size W to match link’s capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity), delay (RTT/2)"

11/12/14 UCB CS162 Fa14 L32! 40

Sliding Window with Errors!
•  Two approaches!

–  Go-Back-n (GBN)!
–  Selective Repeat (SR)!

•  In the absence of errors they behave identically!

•  Go-Back-n (GBN)!
–  Transmit up to n unacknowledged packets!
–  If timeout for ACK(k), retransmit k, k+1, …!
–  Typically uses NACKs instead of ACKs!

»  Recall, NACK specifies first in-sequence packet missed by
receiver!

11/12/14 UCB CS162 Fa14 L32! 41

GBN Example with Errors!
Window size (W) = 3 packets"

Sender" Receiver"

1"
2"
3"
4"
5"

{}"
{}"
{}"

6"
{5}"
{5,6}"

4 is "
missing"Timeout"

Packet 4"

4"
5"
6" {}"

Why doesn’t sender
retransmit packet 4

here?"Assume
packet 4 lost!"

Out-o-seq packets"
in receiver’s window"

NACK 4

NACK 4

11/12/14 UCB CS162 Fa14 L32! 42

Selective Repeat (SR)!
•  Sender: transmit up to n unacknowledged

packets!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing (use
ACKs)!

•  Sender: retransmit packet k !

11/12/14 UCB CS162 Fa14 L32! 43

SR Example with Errors!

Time!

Sender! Receiver!

1!
2!
3!
4!
5!
6!

4!

7!

Window size (W) = 3 packets"
{1}!

{1, 2}!
{1, 2, 3}!
{2, 3, 4}!
{3, 4, 5}!
{4, 5, 6}!

{4,5,6}!

{7}!

Unacked packets "
in sender’s window"

ACK 5

ACK 6

11/12/14 UCB CS162 Fa14 L32! 44

Summary!
•  TCP: Reliable Byte Stream!

–  Open connection (3-way handshaking)!
–  Close connection: no perfect solution; no way for two parties

to agree in the presence of arbitrary message losses
(General’s Paradox) !

•  Reliable transmission!
–  S&W not efficient for links with large capacity (bandwidth)

delay product!
–  Sliding window more efficient but more complex!

•  Flow Control!
–  OS on sender and receiver manage buffers!
–  Sending rate adjusted according to acks and losses!
–  Receiver drops to slow sender on over-run!
!

!11/12/14 UCB CS162 Fa14 L32! 45

