
Distributed System Design

David E. Culler
 CS162 – Operating Systems and Systems Programming

http://cs162.eecs.berkeley.edu/
Lecture 31

Nov 10, 2014

Read: end-2-end
HW 5: Due 11/12
Mid 2: 11/14
Proj 3: due 12/8

Greatest Artifact of Human Civilization …

11/10/14 UCB CS162 Fa14 L1! 2

Example: What’s in a Search Query?!

•  Complex interaction of multiple components in
multiple administrative domains!

–  Systems, services, protocols, …!

Datacenter"

Load"
balancer"

Ad Server"

DNS "
Servers"

Search"
Index"

DNS"
request"

create"
result"
page"

Page
store"

11/10/14 UCB CS162 Fa14 L1! 3

Course Structure: Spiral

11/10/14 UCB CS162 Fa14 L1! 4

intro

Review: Remote Procedure Call

10/27/14 cs162 fa14 L25! 5

Client"
(caller)"

Server"
(callee)"

Packet"
Handler"

Packet"
Handler"

call!

return!

send!

receive!

send!

receive!

return!

call!

N
etw

ork!N
et

w
or

k!

Client"
Stub"

marshal args!

marshal args!
!

unmarshal!
ret vals!

Server"
Stub"

unmarshal!
ret vals!

!

Machine A!

Machine B!

Review: Schematic View of NFS
Architecture

11/10/14 CS162 Fa14 L30! 6

Layering

RPC stubs

Marshaling

Protocol Trade-offs

11/10/14 UCB CS162 Fa14 L1! 7

11/3/2014! Ion Stoica CS162 ©UCB Fall 2014! 13!

Discussion: Iterative vs. Recursive Query!

•  Recursive Query:!
–  Advantages: !

»  Faster, as typically master/directory closer to nodes!
»  Easier to maintain consistency, as master/directory can

serialize puts()/gets()!
– Disadvantages: scalability bottleneck, as all “Values” go through

master/directory!
•  Iterative Query!

–  Advantages: more scalable!
– Disadvantages: slower, harder to enforce data consistency!

…!

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!

get(K14)!

ge
t(K

14
)!

V1
4!

V14!

…!

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!
get(K14)!

get(K14)!

V14!
N3!

Recursive! Iterative!

Societal Scale Information Systems!

Scalable, Reliable,"
Secure Services"

MEMS for "
Sensor Nets"

Internet 
Connectivity"

Databases"
Information Collection"
Remote Storage"
Online Games"
Commerce"

"…"
"

•  The world is a large
distributed system!

–  Microprocessors in everything!
–  Vast infrastructure behind them!

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

11/10/14 UCB CS162 Fa14 L1! 8

What Is A Protocol?!
•  A protocol is an agreement on how to

communicate!
•  Includes!

–  Syntax: how a communication is specified & structured!
»  Format, order messages are sent and received!

–  Semantics: what a communication means!
» Actions taken when transmitting, receiving, or when

a timer expires!
•  Described formally by a state machine!

– Often represented as a message transaction diagram!

Examples of Protocols in Human Interactions!
•  Telephone!

1.  (Pick up / open up the phone)!
2.  Listen for a dial tone / see that you have service!
3.  Dial!
4.  Should hear ringing …!
5.  ! ! ! ! !Callee: “Hello?”!
6.  Caller: “Hi, it’s John….” 

Or: “Hi, it’s me” (← what’s that about?)!
7.  Caller: “Hey, do you think … blah blah blah …” pause!
!
8.  ! !Callee: “Yeah, blah blah blah …” pause!
9.  Caller: Bye!
10.  ! ! ! ! !Callee: Bye!
11.  Hang up!

Protocols in Human Interactions!

Asking a question!
1.  Raise your hand!
2.  Wait to be called on!

3.  Or: wait for speaker to pause and vocalize!

End System: Computer on the ‘Net!

Internet

Also known as a “host”…

What’s in a name?

11/10/14 UCB CS162 Fa14 L1! 13

Namespaces(for(communica/on(

•  Hostname(

– www.eecs.berkeley.edu(
•  IP(address(
–  128.32.244.172(((ipv6?)(

•  Port(Number(

–  0G1023(are(“well(known”(or(“system”(ports(

•  Superuser(privileges(to(bind(to(one(
–  1024(–(49151(are(“registered”(ports((registry)(

•  Assigned(by(IANA(for(specific(services(
–  49152–65535((215+214(to(216−1)(are(“dynamic”(or(
“private”(

•  Automa/cally(allocated(as(“ephemeral(Ports”(

9/10/14(cs162(fa14(L5(25(

Recall:

11/10/14 UCB CS162 Fa14 L1! 14

Client:(ge*ng(the(server(address(

9/10/14(cs162(fa14(L5(24(

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
 char *hostname, int portno) {
 struct hostent *server;
 /* Get host entry associated with a hostname or IP address */
 server = gethostbyname(hostname);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(1);
 }

 /* Construct an address for remote server */
 memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
 serv_addr->sin_family = AF_INET;
 bcopy((char *)server->h_addr,

 (char *)&(serv_addr->sin_addr.s_addr), server->h_length);
 serv_addr->sin_port = htons(portno);

return server;
}

Clients and Servers!
•  Client program!

–  Running on end host!
–  Requests service!
–  E.g., Web browser!

! GET /index.html

Clients and Servers!
•  Client program!

–  Running on end host!
–  Requests service!
–  E.g., Web browser!

!

•  Server program!
–  Running on end host!
–  Provides service!
–  E.g., Web server!

GET /index.html

“Site under construction”

Client-Server Communication!

•  Client “sometimes on”!
–  Initiates a request to the

server when interested!
–  E.g., Web browser on

your laptop or cell phone!
–  Doesn’t communicate

directly with other clients!
–  Needs to know the

server’s address!

•  Server is “always on”!
–  Services requests from

many client hosts!
–  E.g., Web server for the

www.cnn.com Web site!
–  Doesn’t initiate contact

with the clients!
–  Needs a fixed, well-

known address!

Peer-to-Peer Communication!

•  No always-on server at the center of it all!
–  Hosts can come and go, and change addresses!
–  Hosts may have a different address each time!

•  Example: peer-to-peer file sharing (e.g., BitTorrent)!
–  Any host can request files, send files, query to find where a file is

located, respond to queries, and forward queries!
–  Scalability by harnessing millions of peers!
–  Each peer acting as both a client and server!

The Problem!

•  Many different applications!
–  email, web, P2P, etc.!

•  Many different network styles and technologies!
–  Wireless vs. wired vs. optical, etc.!

•  How do we organize this mess?!

The Problem (cont’d)!

•  Re-implement every application for every
technology?!

•  No! But how does the Internet design avoid this?!

Skype ! SSH! NFS!

Packet!
Radio!

Coaxial !
cable!

Fiber!
optic!

Application!

Transmission!
Media!

HTTP!

Solution: Intermediate Layers!

•  Introduce intermediate layers that provide set of
abstractions for various network functionality &
technologies!

– A new app/media implemented only once!
–  Variation on “add another level of indirection”!

Skype ! SSH! NFS!

Packet!
radio!

Coaxial !
cable!

Fiber!
optic!

Application!

Transmission!
Media!

HTTP!

Intermediate !
layers!

Software System Modularity!
Partition system into modules & abstractions:!
•  Well-defined interfaces give flexibility!

– Hides implementation - thus, it can be freely changed!
–  Extend functionality of system by adding new modules!

•  E.g., libraries encapsulating set of functionality!
•  E.g., programming language + compiler

abstracts away not only how the particular CPU
works …!

– … but also the basic computational model !

•  Well-defined interfaces hide information!
–  Present high-level abstractions!
– But can impair performance!

Network System Modularity!
Like software modularity, but:!
•  Implementation distributed across many machines

(routers and hosts)!

•  Must decide:!
–  How to break system into modules:!

»  Layering!
–  What functionality does each module implement:!

»  End-to-End Principle: don’t put it in the network if you can do
it in the endpoints.!

•  We will address these choices more in next lecture!

Layering: A Modular Approach!

•  Partition the system!
–  Each layer solely relies on services from layer below !
–  Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
–  Hides implementation details!
–  Layers can change without disturbing other layers!

Protocol Standardization!
•  Ensure communicating hosts speak the same

protocol!
–  Standardization to enable multiple implementations!
– Or, the same folks have to write all the software!

•  Standardization: Internet Engineering Task Force!
– Based on working groups that focus on specific issues!
–  Produces “Request For Comments” (RFCs)!

»  Promoted to standards via rough consensus and running
code!

–  IETF Web site is http://www.ietf.org/ !
– RFCs archived at http://www.rfc-editor.org/ !

•  De facto standards: same folks writing the code!
–  P2P file sharing, Skype, <your protocol here>…!

Administration Break
•  Midterm 2: Friday 11/14 6-7:30 @ 1 Pimentel

–  Bring one 2-sides 8.5 x 11
–  Email cs162@eecs for conflicts

•  Study guide answers releases
•  Review session in Section this week
•  Focused on Lectures 12-27

–  But assumes earlier material

•  Project 3: Key-Value Store in Java !!!
•  Less readings ahead – lecture even more

important

11/10/14 UCB CS162 Fa14 L1! 26

Example: The Internet Protocol (IP):
“Best-Effort” Packet Delivery!
•  Datagram packet switching!

–  Send data in packets!
– Header with source & destination address!

•  Service it provides:!
–  Packet arrives quickly (if it does)!
–  Packets may be lost!
–  Packets may be corrupted!
–  Packets may be delivered out of order!

source destination

IP network

Example: Transmission Control
Protocol (TCP)!

•  Communication service!
–  Ordered, reliable byte stream!
–  Simultaneous transmission in both directions!

•  Key mechanisms at end hosts!
–  Retransmit lost and corrupted packets!
–  Discard duplicate packets and put packets in order!
–  Flow control to avoid overloading the receiver buffer!
–  Congestion control to adapt sending rate to network load!

source network destination

TCP connection

Recall: Socket Protocol

11/10/14 UCB CS162 Fa14 L1! 29

Recall: Sockets

11/10/14 UCB CS162 Fa14 L1! 30

Request'Response'Protocol'

9/10/14' cs162'fa14'L5' 6'

write(rqfd, rqbuf, buflen); '

n = read(rfd,rbuf,rmax); '

Client'(issues'requests)' Server'(performs'operaAons)'

requests'

responses'

write(wfd, respbuf, len); '

n = read(resfd,resbuf,resmax); '

service'request'wait'

Recall: Socket creation and connection
•  File systems provide a collection of permanent

objects in structured name space
–  Processes open, read/write/close them
–  Files exist independent of the processes

•  Sockets provide a means for processes to
communicate (transfer data) to other processes.

•  Creation and connection is more complex
•  Form 2-way pipes between processes

–  Possibly worlds away

9/10/14 cs162 fa14 L5! 31

Recall: Sockets in concept

9/10/14 cs162 fa14 L5! 32

Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

Accept connection

read request

Connection Socket
write request

write response

Client Protocol

9/10/14 cs162 fa14 L5! 33

char *hostname;!
int sockfd, portno;!
struct sockaddr_in serv_addr;!
struct hostent *server;!
!
server = buildServerAddr(&serv_addr, hostname, portno);!
!
/* Create a TCP socket */!
sockfd = socket(AF_INET, SOCK_STREAM, 0)!
!
/* Connect to server on port */!
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)!
printf("Connected to %s:%d\n",server->h_name, portno);!
!
/* Carry out Client-Server protocol */!
client(sockfd);!
!
/* Clean up on termination */!
close(sockfd);!

Server Protocol (v1)

9/10/14 cs162 fa14 L5! 34

/* Create Socket to receive requests*/!
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);!
!
/* Bind socket to port */!
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));!
while (1) {!
/* Listen for incoming connections */!
 listen(lstnsockfd, MAXQUEUE); !
!
/* Accept incoming connection, obtaining a new socket for it */!
 consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr, !
 &clilen);!
!
 server(consockfd);!
!
 close(consockfd);!
 }!
close(lstnsockfd);!

Sockets in concept: fork

9/10/14 cs162 fa14 L5! 35

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Accept connection

read request

write response

Close Connection
Socket

Close Server Socket

Connection Socket child

Close Connection
Socket

Close Listen Socket
Parent

Wait for child

Server Protocol (v2)

9/10/14 cs162 fa14 L5! 36

while (1) {!
 listen(lstnsockfd, MAXQUEUE); !
 consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,!

! ! ! ! ! ! ! &clilen);!
 cpid = fork(); /* new process for connection */!
 if (cpid > 0) { /* parent process */!
 close(consockfd);!
 tcpid = wait(&cstatus);!
 } else if (cpid == 0) { /* child process */!
 close(lstnsockfd); /* let go of listen socket */!
!
 server(consockfd);!
!
 close(consockfd);!
 exit(EXIT_SUCCESS); /* exit child normally */!
 }!
 }!
close(lstnsockfd);!

Socket API!
•  Base level Network programming interface!

!

Socket!
API!

TCP" UDP"

IP"

Application!

Transport!

Network !

BSD Socket API!
•  Created at UC Berkeley (1980s)

•  Most popular network API

•  Ported to various OSes, various languages
–  Windows Winsock, BSD, OS X, Linux, Solaris, …
–  Socket modules in Java, Python, Perl, …

•  Similar to Unix file I/O API
–  In the form of file descriptor (sort of handle).
–  Can share same read()/write()/close() system calls

TCP: Transport Control Protocol!
•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary
length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion and flow control!

•  Application examples: file transfer, chat!

TCP Service!
1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from  
(IPa, TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

Open Connection: 3-Way Handshaking!

•  Goal: agree on a set of parameters, i.e., the start
sequence number for each side!

– Starting sequence number: sequence of first byte in
stream !

–  Starting sequence numbers are random!

Open Connection: 3-Way Handshaking!
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains

server’s IP address and port number !
–  OS sends a special packet (SYN) containing a proposal for first sequence

number, x!

Client (initiator)! Server!

SYN, SeqNum = x!

Active  
Open"

Passive  
Open"

connect()! listen()!

tim
e"

Open Connection: 3-Way Handshaking!
•  If it has enough resources, server calls accept() to accept

connection, and sends back a SYN ACK packet containing!
–  Client’s sequence number incremented by one, (x + 1)!

»  Why is this needed? !
–  A sequence number proposal, y, for first byte server will send!

Client (initiator)! Server!

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!

ACK, Ack = y + 1!

Active  
Open"

Passive  
Open"

connect()! listen()!

accept()!

allocate  
buffer space!

tim
e"

3-Way Handshaking (cont’d) !

•  Three-way handshake adds 1 RTT delay !

•  Why?!
–  Congestion control: SYN (40 byte) acts as cheap probe!
–  Protects against delayed packets from other connection (would

confuse receiver)!

Close Connection!
•  Goal: both sides agree to close the

connection!
•  4-way connection tear down!

FIN!
FIN ACK!

FIN!
FIN ACK!

Host 1! Host 2!

Can retransmit FIN ACK  
 if it is lost!

tim
eo

ut
!

closed!

close!

close!

closed!

data!

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the
implementation!

•  Q3: True _ False _ Layering helps to improve
application performance!

•  Q4: True _ False _ “Best Effort” packet delivery
ensures that packets are delivered in order!

•  Q5: True _ False _ In p2p systems a node is both a
client and a server!

•  Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time !

!
!

Quiz 15.2: Protocols!

•  Q1: True _ False _ Protocols specify the syntax and
semantics of communication!

•  Q2: True _ False _ Protocols specify the
implementation!

•  Q3: True _ False _ Layering helps to improve
application performance!

•  Q4: True _ False _ “Best Effort” packet delivery
ensures that packets are delivered in order!

•  Q5: True _ False _ In p2p systems a node is both a
client and a server!

•  Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time !

!
!

Quiz 15.2: Protocols!
X!

X!

X!

X!

X!

X!

Summary!
•  Important roles of!

–  Protocols, standardization!
–  Clients, servers, peer-to-peer!

•  A layered architecture is a powerful means for
organizing complex networks!

–  But, layering has its drawbacks too!

•  Next lecture!
–  Layering!
–  End-to-End arguments (please read the paper before lecture!)!

!

