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Greatest Artifact of Human Civilization … 
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Example: What’s in a Search Query?!

•  Complex interaction of multiple components in 
multiple administrative domains!

–  Systems, services, protocols, …!
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Course Structure: Spiral 
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Review: Remote Procedure Call 
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Review: Schematic View of NFS 
Architecture  
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Layering 

RPC stubs 
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Protocol Trade-offs 
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Discussion: Iterative vs. Recursive Query!

•  Recursive Query:!
–  Advantages: !

»  Faster, as typically master/directory closer to nodes!
»  Easier to maintain consistency, as master/directory can 

serialize puts()/gets()!
– Disadvantages: scalability bottleneck, as all “Values” go through  

master/directory!
•  Iterative Query!

–  Advantages: more scalable!
– Disadvantages: slower, harder to enforce data consistency!

…!
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Societal Scale Information Systems!

Scalable, Reliable,"
Secure Services"

MEMS for "
Sensor Nets"

Internet 
Connectivity"

Databases"
Information Collection"
Remote Storage"
Online Games"
Commerce"

"…"
"

•  The world is a large 
distributed system!

–  Microprocessors in everything!
–  Vast infrastructure behind them!

Clusters 

Massive Cluster 

Gigabit Ethernet 

Clusters 

Massive Cluster 

Gigabit Ethernet 
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What Is A Protocol?!
•  A protocol is an agreement on how to 

communicate!
•  Includes!

–  Syntax: how a communication is specified & structured!
»  Format, order messages are sent and received!

–  Semantics: what a communication means!
» Actions taken when transmitting, receiving, or when 

a timer expires!
•  Described formally by a state machine!

– Often represented as a message transaction diagram!



Examples of Protocols in Human Interactions!
•  Telephone!

1.  (Pick up / open up the phone)!
2.  Listen for a dial tone / see that you have service!
3.  Dial!
4.  Should hear ringing …!
5.      ! ! ! ! !Callee: “Hello?”!
6.  Caller: “Hi, it’s John….” 

Or: “Hi, it’s me”  (← what’s that about?)!
7.  Caller: “Hey, do you think … blah blah blah …” pause!
!
8.   ! !Callee: “Yeah, blah blah blah …” pause!
9.  Caller: Bye!
10.   ! ! ! ! !Callee: Bye!
11.  Hang up!



Protocols in Human Interactions!

Asking a question!
1.  Raise your hand!
2.  Wait to be called on!

3.  Or: wait for speaker to pause and vocalize!



End System: Computer on the ‘Net!

Internet 

Also known as a “host”… 



What’s in a name? 
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Recall: 
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Client:(ge*ng(the(server(address(
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struct hostent *buildServerAddr(struct sockaddr_in *serv_addr, 
                                char *hostname, int portno) { 
  struct hostent *server; 
  /* Get host entry associated with a hostname or IP address */ 
  server = gethostbyname(hostname); 
  if (server == NULL) { 
    fprintf(stderr,"ERROR, no such host\n"); 
    exit(1); 
  } 
 
  /* Construct an address for remote server */ 
  memset((char *) serv_addr, 0, sizeof(struct sockaddr_in)); 
  serv_addr->sin_family = AF_INET; 
  bcopy((char *)server->h_addr,  

     (char *)&(serv_addr->sin_addr.s_addr), server->h_length); 
  serv_addr->sin_port = htons(portno); 
   
return server; 
} 



Clients and Servers!
•  Client program!

–  Running on end host!
–  Requests service!
–  E.g., Web browser!

! GET /index.html 



Clients and Servers!
•  Client program!

–  Running on end host!
–  Requests service!
–  E.g., Web browser!

!

•  Server program!
–  Running on end host!
–  Provides service!
–  E.g., Web server!

GET /index.html 

“Site under construction” 



Client-Server Communication!

•  Client “sometimes on”!
–  Initiates a request to the 

server when interested!
–  E.g., Web browser on 

your laptop or cell phone!
–  Doesn’t communicate 

directly with other clients!
–  Needs to know the 

server’s address!

•  Server is “always on”!
–  Services requests from 

many client hosts!
–  E.g., Web server for the 

www.cnn.com Web site!
–  Doesn’t initiate contact 

with the clients!
–  Needs a fixed, well-

known address!



Peer-to-Peer Communication!

•  No always-on server at the center of it all!
–  Hosts can come and go, and change addresses!
–  Hosts may have a different address each time!

•  Example: peer-to-peer file sharing (e.g., BitTorrent)!
–  Any host can request files, send files, query to find where a file is 

located, respond to queries, and forward queries!
–  Scalability by harnessing millions of peers!
–  Each peer acting as both a client and server!



The Problem!

•  Many different applications!
–  email, web, P2P, etc.!

•  Many different network styles and technologies!
–  Wireless vs. wired vs. optical, etc.!

•  How do we organize this mess?!



The Problem (cont’d)!

•  Re-implement every application for every 
technology?!

•  No! But how does the Internet design avoid this?!

Skype ! SSH! NFS!

Packet!
Radio!

Coaxial !
cable!

Fiber!
optic!

Application!

Transmission!
Media!

HTTP!



Solution: Intermediate Layers!

•  Introduce intermediate layers that provide set of 
abstractions for various network functionality & 
technologies!

– A new app/media implemented only once!
–  Variation on “add another level of indirection”!

Skype ! SSH! NFS!

Packet!
radio!

Coaxial !
cable!

Fiber!
optic!

Application!

Transmission!
Media!

HTTP!

Intermediate !
layers!



Software System Modularity!
Partition system into modules & abstractions:!
•  Well-defined interfaces give flexibility!

– Hides implementation - thus, it can be freely changed!
–  Extend functionality of system by adding new modules!

•  E.g., libraries encapsulating set of functionality!
•  E.g., programming language + compiler 

abstracts away not only how the particular CPU 
works …!

– … but also the basic computational model !

•  Well-defined interfaces hide information!
–  Present high-level abstractions!
– But can impair performance!



Network System Modularity!
Like software modularity, but:!
•  Implementation distributed across many machines 

(routers and hosts)!

•  Must decide:!
–  How to break system into modules:!

»  Layering!
–  What functionality does each module implement:!

»  End-to-End Principle: don’t put it in the network if you can do 
it in the endpoints.!

•  We will address these choices more in next lecture!



Layering: A Modular Approach!

•  Partition the system!
–  Each layer solely relies on services from layer below !
–  Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
–  Hides implementation details!
–  Layers can change without disturbing other layers!



Protocol Standardization!
•  Ensure communicating hosts speak the same 

protocol!
–  Standardization to enable multiple implementations!
– Or, the same folks have to write all the software!

•  Standardization: Internet Engineering Task Force!
– Based on working groups that focus on specific issues!
–  Produces “Request For Comments” (RFCs)!

»  Promoted to standards via rough consensus and running 
code!

–  IETF Web site is http://www.ietf.org/ !
– RFCs archived at http://www.rfc-editor.org/ !

•  De facto standards: same folks writing the code!
–  P2P file sharing, Skype, <your protocol here>…!



Administration Break 
•  Midterm 2: Friday 11/14 6-7:30 @ 1 Pimentel 

–  Bring one 2-sides 8.5 x 11 
–  Email cs162@eecs for conflicts 

•  Study guide answers releases 
•  Review session in Section this week 
•  Focused on Lectures 12-27 

–  But assumes earlier material 

•  Project 3: Key-Value Store in Java !!! 
•  Less readings ahead – lecture even more 

important 
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Example: The Internet Protocol (IP): 
“Best-Effort” Packet Delivery!
•  Datagram packet switching!

–  Send data in packets!
– Header with source & destination address!

•  Service it provides:!
–  Packet arrives quickly (if it does)!
–  Packets may be lost!
–  Packets may be corrupted!
–  Packets may be delivered out of order!

source destination 

IP network 



Example: Transmission Control 
Protocol (TCP)!

•  Communication service!
–  Ordered, reliable byte stream!
–  Simultaneous transmission in both directions!

•  Key mechanisms at end hosts!
–  Retransmit lost and corrupted packets!
–  Discard duplicate packets and put packets in order!
–  Flow control to avoid overloading the receiver buffer!
–  Congestion control to adapt sending rate to network load!

source network destination 

TCP connection 



Recall: Socket Protocol 
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Recall: Sockets 

11/10/14 UCB CS162 Fa14 L1! 30 

Request'Response'Protocol'
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write(rqfd, rqbuf, buflen); '

n = read(rfd,rbuf,rmax); '

Client'(issues'requests)' Server'(performs'operaAons)'

requests'

responses'

write(wfd, respbuf, len); '

n = read(resfd,resbuf,resmax); '

service'request'wait'



Recall: Socket creation and connection 
•  File systems provide a collection of permanent 

objects in structured name space 
–  Processes open, read/write/close them 
–  Files exist independent of the processes 

•  Sockets provide a means for processes to 
communicate (transfer data) to other processes. 

•  Creation and connection is more complex 
•  Form 2-way pipes between processes 

–  Possibly worlds away 
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Recall: Sockets in concept 
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Client Server 

read response 

Close Client Socket 

Create Client Socket 

Connect it to server (host:port) 

Create Server Socket 

Bind it to an Address (host:port) 

Listen for Connection 

Close Connection Socket 

Close Server Socket 

Accept connection 

read request 

Connection Socket 
write request 

write response 



Client Protocol 
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char *hostname;!
int sockfd, portno;!
struct sockaddr_in serv_addr;!
struct hostent *server;!
!
server = buildServerAddr(&serv_addr, hostname, portno);!
!
/* Create a TCP socket */!
sockfd = socket(AF_INET, SOCK_STREAM, 0)!
!
/* Connect to server on port */!
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)!
printf("Connected to %s:%d\n",server->h_name, portno);!
!
/* Carry out Client-Server protocol */!
client(sockfd);!
!
/* Clean up on termination */!
close(sockfd);!



Server Protocol (v1) 
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/* Create Socket to receive requests*/!
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);!
!
/* Bind socket to port */!
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));!
while (1) {!
/* Listen for incoming connections */!
   listen(lstnsockfd, MAXQUEUE); !
!
/* Accept incoming connection, obtaining a new socket for it */!
   consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,       !
                      &clilen);!
!
   server(consockfd);!
!
   close(consockfd);!
  }!
close(lstnsockfd);!



Sockets in concept: fork 
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Client Server 
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Close Client Socket 
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Server Protocol (v2) 
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while (1) {!
    listen(lstnsockfd, MAXQUEUE);    !
    consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,!

! ! ! ! ! ! ! &clilen);!
    cpid = fork();              /* new process for connection */!
    if (cpid > 0) {             /* parent process */!
      close(consockfd);!
      tcpid = wait(&cstatus);!
    } else if (cpid == 0) {      /* child process */!
      close(lstnsockfd);        /* let go of listen socket */!
!
      server(consockfd);!
!
      close(consockfd);!
      exit(EXIT_SUCCESS);         /* exit child normally */!
    }!
  }!
close(lstnsockfd);!



Socket API!
•  Base level Network programming interface!

!

Socket!
API!

TCP" UDP"

IP"

Application!

Transport!

Network !



BSD Socket API!
•  Created at UC Berkeley (1980s) 

•  Most popular network API 

•  Ported to various OSes, various languages 
–  Windows Winsock, BSD, OS X, Linux, Solaris, … 
–  Socket modules in Java, Python, Perl, … 

•  Similar to Unix file I/O API 
–  In the form of file descriptor (sort of handle). 
–  Can share same read()/write()/close() system calls 



TCP: Transport Control Protocol!
•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary 
length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion and flow control!

•  Application examples: file transfer, chat!



TCP Service!
1)  Open  connection: 3-way handshaking!

2)  Reliable byte stream transfer from  
(IPa, TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!



Open Connection: 3-Way Handshaking!

•  Goal: agree on a set of parameters, i.e., the start 
sequence number for each side!

– Starting sequence number: sequence of first byte in 
stream !

–  Starting sequence numbers are random!



Open Connection: 3-Way Handshaking!
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains 

server’s IP address and port number !
–  OS sends a special packet (SYN) containing a proposal for first sequence 

number, x!

Client (initiator)! Server!

SYN, SeqNum = x!

Active  
Open"

Passive  
Open"

connect()! listen()!

tim
e"



Open Connection: 3-Way Handshaking!
•  If it has enough resources, server calls accept() to accept 

connection, and sends back a SYN ACK packet containing!
–  Client’s sequence number incremented by one, (x + 1)!

»  Why is this needed? !
–  A sequence number proposal, y, for first byte server will send!

Client (initiator)! Server!

SYN, SeqNum = x!

SYN and ACK, SeqNum = y and Ack = x + 1!

ACK, Ack = y + 1!

Active  
Open"

Passive  
Open"

connect()! listen()!

accept()!

allocate  
buffer space!

tim
e"



3-Way Handshaking (cont’d) !

•  Three-way handshake adds 1 RTT delay !

•  Why?!
–  Congestion control: SYN (40 byte) acts as cheap probe!
–  Protects against delayed packets from other connection (would 

confuse receiver)!



Close Connection!
•  Goal: both sides agree to close the 

connection!
•  4-way connection tear down!

FIN!
FIN ACK!

FIN!
FIN ACK!

Host 1! Host 2!

Can retransmit FIN ACK  
 if it is lost!

tim
eo

ut
!

closed!

close!

close!

closed!

data!



•  Q1: True _  False _  Protocols specify the syntax and 
semantics of communication!

•  Q2: True _  False _  Protocols specify the 
implementation!

•  Q3: True _  False _  Layering helps to improve 
application performance!

•  Q4: True _  False _  “Best Effort” packet delivery 
ensures that packets are delivered in order!

•  Q5: True _  False _  In p2p systems a node is both a 
client and a server!

•  Q6: True _  False _  TCP ensures that each packet is 
delivered within a predefined amount of time !

!
!

Quiz 15.2: Protocols!



•  Q1: True _  False _  Protocols specify the syntax and 
semantics of communication!

•  Q2: True _  False _  Protocols specify the 
implementation!

•  Q3: True _  False _  Layering helps to improve 
application performance!

•  Q4: True _  False _  “Best Effort” packet delivery 
ensures that packets are delivered in order!

•  Q5: True _  False _  In p2p systems a node is both a 
client and a server!

•  Q6: True _  False _  TCP ensures that each packet is 
delivered within a predefined amount of time !

!
!

Quiz 15.2: Protocols!
X!

X!

X!

X!

X!

X!



Summary!
•  Important roles of!

–  Protocols, standardization!
–  Clients, servers, peer-to-peer!

•  A layered architecture is a powerful means for 
organizing complex networks!

–  But, layering has its drawbacks too!

•  Next lecture!
–  Layering!
–  End-to-End arguments (please read the paper before lecture!)!

!


