Distributed System Design

David E. Culler
CS162 — Operating Systems and Systems Programming
http://cs162.eecs.berkeley.edu/

Lecture 31
Nov 10, 2014

Read: end-2-end
HW 5: Due 11/12
Mid 2: 11/14

Proj 3: due 12/8

11/10/14

VA
N s
;3*'}

verio.net /\ Qw’ ‘ 5

psi.net

D

4

v
RS

ftnet—"~

bbnplanet.net

alter.net
ans.net

Burch/Cheswick map of the Intemmet
showing the major ISPs. Data collected 28 June 1999

hitp:ffwwrw { html
Copyright (C) 1999, Lucent Technologies

UCB CS162 Fa14 L1 2

Example: What'’s in a Search Query?

DNS
Servers 1 Datacenter
,;Z‘ \

DNS o create) Search
request e result /l Index

1 A page l o

nternet Load
balancer

_

- Complex interaction of multiple components in
multiple administrative domains

— Systems, services, protocols, ...

UCB CS162 Fa14 L1

Course Structure: Spiral

e Sysg
Q\"\ ' g

g
& o

D (dp) —_ o

5 O intro \&¥ S'

3 N

o))
@@/@ . 9) houensn®” .\?{o
@@ \

UCB CS162 Fa14 L1

Review: Remote Procedure Call

marshal args

ret vals

cs162 fa14 L25

_ call _ send
Client »1 Client »] Packet
(caller) | Stub |« - Handler
return receive
unmarshal
ret vals -
ll o
2
O
marshal args Z
return send
Server »| Server »| Packet
(callee) |e Stub |« : Handler
call receive
unmarshal

Review: Schematic View of NFS
Architecture

client server

system-calls interface

¥
VFS interface — VFS interface
l Y Y
other types of UNIX file NFS NFS UNIX file
file systems system client server system

A

v I :
‘ RPC/XDR RPC/XDR |

| A (T
=
network

RPC stubs 2

CS162 Fa14 L30

Protocol Trade-offs

Discussion: Iterative vs. Recursive Query

Master/Directory Master/Directory
- _ get(K14y === == = = >
get(\}ﬁjz______::':E K Ng* === -———. E K14
> P V1 4‘\\\ N 9@/{4’
] \%\II Y S>Y \qu
&, X7 .
Recursive &/ lterative U
Kid|Vvia K14 VT3

N1 N2 N3 N50 N1 N2 N3 N50
- Recursive Query:

— Advantages:

» Faster, as typically master/directory closer to nodes

» Easier to maintain consistency, as master/directory can
serialize puts()/gets()

— Disadvantages: scalability bottleneck, as all “Values” go through
master/directory

- lterative Query
— Advantages: more scalable

— Disadvantages: slower, harder to enforce data consistency
11/3/2014 lon Stoica CS162 ©UCB Fall 2014 13

UCB CS162 Fa14 L1

B "
i
' [
" 1

- The world is a large
distributed system , i
— Microprocessors in everything = i e
— Vast infrastructure behind them JEuuERESRR il "

Scalable, Reliable,
Secure Services

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

MEMS or
Sensor Nets

UCB CS162 Fa14 L1

What Is A Protocol?

A protocol is an agreement on how to
communicate

* Includes
— Syntax: how a communication is specified & structured
» Format, order messages are sent and received
— Semantics: what a communication means

» Actions taken when transmitting, receiving, or when
a timer expires

- Described formally by a state machine
— Often represented as a message transaction diagram

Examples of Protocols in Human InteractioR

S
&
N/
/,
=7

o

 Telephone

o0k wbA

8.
9.

10.
11.

(Pick up / open up the phone)
Listen for a dial tone / see that you have service
Dial
Should hear ringing ..

\ Callee: “Hello?”
Caller: “Hi, it's John...” . ——

Or: “Hi, it’'s me” (< what’s that about?)
Caller: “Hey, do you think ... blah blah blah ...” pause

Callee: “Yeah, blah blah blah ...” pause
Calm —

/ Callee: Bye
Hang up

Protocols in Human Interactions

Asking a question
1. Raise your hand
2. Wait to be called on

3. Or: wait for speaker to pause and vocalize

End System: Computer on the ‘Net

’ _
&1

N
e —
C~_

Internet

Also known as a ‘host ..

What’s in a name?

Namespaces for communication

* Hostname
— www.eecs.berkeley.edu

e |P address
— 128.32.244.172 (ipv6?)

e Port Number

— 0-1023 are “well known” or “system” ports
» Superuser privileges to bind to one

— 1024 — 49151 are “registered” ports (registry)
» Assigned by IANA for specific services

— 49152-65535 (2%>+2%4 to 216-1) are “dynamic” or
“private”
* Automatically allocated as “ephemeral Ports”

9/10/14 cs162 fald L5 25

UCB CS162 Fa14 L1

Recall:

Client: getting the server address

struct hostent *buildServerAddr (struct sockaddr in *serv_ addr,
char *hostname, int portno) {

struct hostent *server;
/* Get host entry associated with a hostname or IP address */

server = gethostbyname (hostname) ;

if (server == NULL) {
fprintf (stderr, "ERROR, no such host\n");
exit (1) ;

/* Construct an address for remote server */
memset ((char *) serv addr, 0, sizeof(struct sockaddr in));

serv_addr->sin family = AF INET;
bcopy ((char *)server->h addr,
(char *)é&(serv _addr->sin addr.s addr), server->h length);

serv_addr->sin port = htons (portno);

return server;

}

9/10/14 cs162 fald LS 24

UCB CS162 Fa14 L1

Clients and Servers

» Client program
— Running on end host
— Requests service
— E.g., Web browser
GET /index.html

)

C~_

Clients and Servers

» Client program - Server program
— Running on end host — Running on end host
— Requests service — Provides service
— E.g., Web browser — E.g., Web server

GET /index.html

F N

A
T

“Site under construction’

Client-Server Communication

« Client “sometimes on”

— Initiates a request to the
server when interested

— E.g., Web browser on
your laptop or cell phone

— Doesn’t communicate
directly with other clients

— Needs to know the
server’s address

- Server is “always on”

Services requests from
many client hosts

E.g., Web server for the
www.cnn.com Web site

Doesn’t initiate contact
with the clients

Needs a fixed, well-
known address

Peer-to-Peer Communication

- No always-on server at the center of it all
— Hosts can come and go, and change addresses
— Hosts may have a different address each time

- Example: peer-to-peer file sharing (e.g., BitTorrent)

— Any host can request files, send files, query to find where a file is
located, respond to queries, and forward queries

— Scalability by harnessing millions of peers
— Each peer acting as both a client and server

The Problem

- Many different applications
— email, web, P2P, etc.

- Many different network styles and technologies
— Wireless vs. wired vs. optical, etc.

- How do we organize this mess?

The Problem (cont’d)

Application
Transmission Coaxial Fiber Packet
Media cable optic Radio

- Re-implement every application for every
technology?

- No! But how does the Internet design avoid this?

Solution: Intermediate Layers

- Introduce intermediate layers that provide set of
abstractions for various network functionality &
technologies

— A new app/media implemented only once
— Variation on “add another level of indirection”

Application Skype | | SSH NFS HTTP

Intermediate W
layers /§‘ _______

Transmission Coaxial Fiber Packet
Media cable optic radio

Software System Modularity

Partition system into modules & abstractions:

- Well-defined interfaces give flexibility
— Hides implementation - thus, it can be freely changed
— Extend functionality of system by adding new modules

- E.g., libraries encapsulating set of functionality
- E.g., programming language + compiler
abstracts away not only how the particular CPU
works ...
— ... but also the basic computational model
- Well-defined interfaces hide information
— Present high-level abstractions
— But can impair performance

Network System Modularity

Like software modularity, but:

- Implementation distributed across many machines
(routers and hosts)

- Must decide:
— How to break system into modules:
» Layering
— What functionality does each module implement:

» End-to-End Principle: don’ t put it in the network if you can do
it in the endpoints.

« We will address these choices more in next lecture

Layering: A Modular Approach

 Partition the system
— Each layer solely relies on services from layer below
— Each layer solely exports services to layer above

- Interface between layers defines interaction
— Hides implementation details
— Layers can change without disturbing other layers

Protocol Standardization

- Ensure communicating hosts speak the same
protocol

— Standardization to enable multiple implementations
— Or, the same folks have to write all the software

- Standardization: Internet Engineering Task Force
— Based on working groups that focus on specific issues

— Produces “Request For Comments” (RFCs)

» Promoted to standards via rough consensus and running
code

— IETF Web site is http:/www.ietf.orq/
— RFCs archived at http:/www.rfc-editor.orqg/

- De facto standards: same folks writing the code
— P2P file sharing, Skype, <your protocol here>...

Administration Break

* Midterm 2: Friday 11/14 6-7:30 @ 1 Pimentel

— Bring one 2-sides 8.5 x 11
— Email cs162@eecs for conflicts

« Study guide answers releases
* Review session in Section this week

* Focused on Lectures 12-27
— But assumes earlier material

* Project 3: Key-Value Store in Java !!!

* Less readings ahead — lecture even more
important

UCB CS162 Fa14 L1

Example: The Internet Protocol (IP):
“Best-Effort” Packet Delivery

- Datagram packet switching
— Send data in packets
— Header with source & destination address

- Service it provides:
— Packet arrives quickly (if it does)
— Packets may be lost
— Packets may be corrupted
— Packets may be delivered out of order

source destination

=

IP network -

Example: Transmission Control
Protocol (TCP)

« Communication service
— Ordered, reliable byte stream
— Simultaneous transmission in both directions

- Key mechanisms at end hosts
— Retransmit lost and corrupted packets
— Discard duplicate packets and put packets in order
— Flow control to avoid overloading the receiver buffer
— Congestion control to adapt sending rate to network load

TCP connection

source network destination

Recall: Socket Protocol

UCB CS162 Fa14 L1

Recall: Sockets

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqfd, rgbuf, buflen);

read(rfd, rbuf, rmax);

service request

rite(wfd, respbuf, len);

responses

n = read(resfd,resbuf,resmax);

9/10/14 cs162 fald L5 6

11/10/14 UCB CS162 Fa14 L1 30

Recall: Socket creation and connection

File systems provide a collection of permanent
objects in structured name space

— Processes open, read/write/close them
— Files exist independent of the processes

Sockets provide a means for processes to
communicate (transfer data) to other processes.

Creation and connection is more complex

Form 2-way pipes between processes
— Possibly worlds away

cs162 fa14 L5

Recall: Sockets in concept

Client Server Create Server Socket
Create Client Socket Bind it to an Address (host:port)
Connect it to server (host:port) Listen for Connection
Accept connection
Connection Socket

write request read request

read response write response
Close Client Socket Close Connection Socket

Close Server Socket

cs162 fa14 L5

Client Protocol

char *hostname;

int sockfd, portno;

struct sockaddr in serv_addr;
struct hostent *server;

server = buildServerAddr (&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket(AF INET, SOCK STREAM, O0)

/* Connect to server on port */
connect (sockfd, (struct sockaddr *) &serv addr, sizeof(serv addr)
printf ("Connected to %$s:%d\n",server->h name, portno);

/* Carry out Client-Server protocol */
client(sockfd);

/* Clean up on termination */
close(sockfd);

cs162 fa14 L5

Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket(AF INET, SOCK STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)&serv addr,sizeof(serv addr));
while (1) {
/* Listen for incoming connections */
listen(lstnsockfd, MAXQUEUE);

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli addr,
&clilen);
server (consockfd);
close(consockfd);

}
close(lstnsockfd);

cs162 fa14 L5

Sockets in concept: fork

Client Server Create Server Socket
Create Client Socket Bind it to an Address (host:port)
Connect it to server (host:port) Listen for Connection
Accept connection
child Connection Socket Parent
. Close Listen Socket Close Connecti
write request ~ read request ose Lonnection
Socket
read response ~write response
Close Connection Wait for child

Close Client Socket Socket

Close Server Socket
cs162 fa14 L5

Server Protocol (v2)

while (1) {
listen(lstnsockfd, MAXQUEUE) ;
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli addr,
&clilen);

cpid = fork(); /* new process for connection */

if (cpid > 0) { /* parent process */
close(consockfd);
tcpid = wait(&cstatus);

} else if (cpid == 0) { /* child process */
close(lstnsockfd); /* let go of listen socket */

server (consockfd);

close(consockfd);
exit (EXIT SUCCESS); /* exit child normally */

}

}
close(lstnsockfd);

cs162 fa14 L5

Socket API

- Base level Network programming interface

N R o
Application) ‘; s
« Socket

EEEEEEEEEEEEEEEEEEEDRN EEN EEEEEEDR EEEERN API

Transport

Network

BSD Socket API

Created at UC Berkeley (1980s)
Most popular network API

Ported to various OSes, various languages
— Windows Winsock, BSD, OS X, Linux, Solaris, ...
— Socket modules in Java, Python, Perl, ...

Similar to Unix file I/O API

— In the form of file descriptor (sort of handle).
— Can share same read ()/write()/close() system calls

TCP: Transport Control Protocol

Reliable, in-order, and at most once delivery

Stream oriented: messages can be of arbitrary
length

Provides multiplexing/demultiplexing to IP
Provides congestion and flow control

Application examples: file transfer, chat

TCP Service

1) Open connection: 3-way handshaking

2) Reliable byte stream transfer from
(IPa, TCP_Port1) to (IPb, TCP_Port2)

Indication if connection fails: Reset

3) Close (tear-down) connection

Open Connection: 3-Way Handshaking

- Goal: agree on a set of parameters, i.e., the start
sequence number for each side

— Starting sequence number: sequence of first byte in
stream
— Starting sequence numbers are random

Open Connection: 3-Way Handshaking

- Server waits for new connection calling listen()

- Sender call connect() passing socket which contains

server’s IP address and port number
— OS sends a special packet (SYN) containing a proposal for first sequence

number, X

Client (initiator)

Active
Open connect()

time

Server

listen()
Passive
Open

Open Connection: 3-Way Handshaking

- If it has enough resources, server calls accept() to accept
connection, and sends back a SYN ACK packet containing

— Client’s sequence number incremented by one, (x + 1)

» Why is this needed?
— A sequence number proposal, y, for first byte server will send

Client (initiator) Server
Active i
listen()

Open connect SYN
P () » SeqNum = X Passive
Open

num =y and Ack =x* T accept(

SYN and ACK, Se

ACK: ACk Sy +1
\ allocate

buffer space

time

3-Way Handshaking (cont’d)

- Three-way handshake adds 1 RTT delay

« Why?
— Congestion control: SYN (40 byte) acts as cheap probe

— Protects against delayed packets from other connection (would
confuse receiver)

Close Connection

- Goal: both sides agree to close the

connection
- 4-way connection tear down
close FIN
_>
FIN ACK
< data
Nl FIN close
o FIN ACK
Can retransmit FIN ACK § —> closed
if it is lost £
closed

Quiz 15.2: Protocols
Q1: True _ False _ Protocols specify the syntax and
semantics of communication

Q2: True _ False _ Protocols specify the
implementation

Q3: True _ False _ Layering helps to improve
application performance

Q4: True _ False _ “Best Effort” packet delivery
ensures that packets are delivered in order

Q5: True _ False _ In p2p systems a node is both a
client and a server

Q6: True _ False _ TCP ensures that each packet is
delivered within a predefined amount of time

Quiz 15.2: Protocols
Q1: True X False _ Protocols specify the syntax and
semantics of communication

Q2: True _ FalseX Protocols specify the
implementation

Q3: True _ False X Layering helps to improve
application performance

Q4: True _ False)_(“Best Effort” packet delivery
ensures that packets are delivered in order

Q5: TrueX False _ In p2p systems a node is both a
client and a server

Q6: True _ False X TCP ensures that each packet is
delivered within a predefined amount of time

Summary

- Important roles of
— Protocols, standardization
— Clients, servers, peer-to-peer

- A layered architecture is a powerful means for
organizing complex networks
— But, layering has its drawbacks too

* Next lecture
— Layering
— End-to-End arguments (please read the paper before lecture!)

