Finish — Introduction to Process

Introduction to File Systems

David E. Culler
CS162 — Operating Systems and Systems Programming
Lecture 2" & 3
Sept 5, 2014

Reading: A&D 3.1-3, 11.1-2
HW: 0 out, due 9/8

rtn rfi

Limited HW access Full HW access

9/3/14 UCB CS162 Fal4 L2 2

Recall: Interrupt Vector

Address and properties of
each interrupt handler

.

interrupt number

(i)

Al

intrpHandler 1 () {

}

* Where else do you see this dispatch pattern?

9/3/14 UCB CS162 Fal4 L2 3

Simple B&B: User => Kernel

Proc
2 eee
OS

sysmode
Base
Bound
uPC

PC

regs

* How to return to
system?

9/3/14

0 1000...
code
1000 ... 0000... Static Data
1100... FFFF.. heap
XXXX...
L sk || 1100.
0000 1234 |
3000...
OOFF... -

3080...

FFFF...
UCB CS162 Fal4 L2

Simple B&B: Interrupt
el
OS

sysmode 1

code

Static Data

heap

1000...

B code
Base | 1000 .. /| 0000, Seatic Dota
Bound | 1100 ... || FrrE. heap

uPC | 0000 1234
x| 1100..

PC | IntrpVector[1i]

3000...

code

regs

Static Data
OOFF...

* How to save heap

registers and set up
system stack?

3080...

FFFF...
9/3/14 UCB CS162 Fal4 L2 5

Proc
2 esse
L

p= N sysmode
1000 ...
Base
1100 ...
Bound
0000 1234
uPC
regs
& PC
OOFF...
- J regs

* How tosave
registers and set up
system stack?

9/3/14

0000..
code | RTU
Static l]!ata
1 1000...
3000 ... Static Data
0080 ... / heap
0000 0248
s [1100..
0001 0124
- 3000...
Static Data
00DO0...]
heap
3080...
FFFF...

UCB CS162 Fal4 L2

Simple B&B: “resume”

Proc
2 esse
OS

* How tosave
registers and set up
system stack?

9/3/14

L N Sysmode 0
1000 ...
Base | 3000 ...
1100 ...
Bound | 0080 ...
0000 1234
uPC XXXX XXXX
regs
PC [000 0248
OOFF...
- J regs
00DO0...

UCB CS162 Fal4 L2

code RTU

Static Data

heap

code

Static Data

heap

code

Static Data

heap

FFFF..

What’s wrong with this simplistic
address translation mechanism?

9/3/14 UCB CS162 Fal4 L2 8

X86 — segments and stacks

Processor Registers

code

Static Data

Start address, length and
access rights associated
with each segment

9/3/14 UCB CS162 Fal4 L2 9

Virtual Address Translation

* Simpler, more useful schemes too!

* Give every process the illusion of its own BIG
FLAT ADDRESS SPACE

— Break it into pages

— More on this later

9/3/14 UCB CS162 Fal4 L2 10

Running Many Programs ???

9/3/14

We have the basic mechanism to

— switch between user processes and the kernel,
— the kernel can switch among user processes,

— Protect OS from user processes and processes from
each other

Questions ??7?

How do we decide which user process to run?
How do we represent user processes in the 0S?
How do we pack up the process and set it aside?
How do we get a stack and heap for the kernel?
Aren’t we wasting are lot of memory?

UCB CS162 Fal4 L2 11

Process Control Block

* Kernel represents each process as a process
control block (PCB)

— Status (running, ready, blocked, ...)
— Register state (when not ready)
— Process ID (PID), User, Executable, Priority, ...

— Execution time, ...
— Memory space, translation, ...

e Kernel Scheduler maintains a data structure
containing the PCBs

* Scheduling algorithm selects the next one to run

9/3/14 UCB CS162 Fal4 L2 12

Scheduler

if (readyProcesses(PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB) ;

} else {
run idle process();

9/3/14 UCB CS162 Fal4 L2 13

Server
request - parse request 9.formatr
buffer
{
1. network 10. network 5.file 0
Sysca read Py copy write °/>¢@ Y copy
Kernel RTU RTU
wait N\ :
11. kernel copy wait
from user buffer
into network buffer
interrupt interrupt
. /5 12. format outgoing 6. disk /['\ .
2. copy arriving acket and DMA request 7. disk
packet (DMA) P 9 data (DMA)
Hardware
A4 /

Network Interface

9/3/14 UCB CS162 Fal4 L2

Disk Interface

14

4 OS concepts working together

Privilege/User Mode

— The hardware can operate in two modes, with only the
“system” mode having the ability to access certain resources.

Address Space

— Programs execute in an address space that is distinct from the
memory space of the physical machine

Process

— An instance of an executing program is a process consisting of
an address space and one or more threads of control

Protection

— The OS and the hardware are protected from user programs
and user programs are isolated from one another by controlling
the translation from program virtual addresses to machine
physical addresses

9/3/14 UCB CS162 Fal4 L2 15

9/5/14 cs162 fal4 L# 16

Introduction to File Systems

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 3
Sept 5, 2014

Reading: A&D 3.1-3, 11.1-2
HW: 0 out, due 9/8

Objective of this lecture

* Show how Operating System functionality
distributes across layers in the system.

* Introduce I/O & storage services —i.e., file
systems

9/5/14 cs162 fald L# 18

Reflecting on the process intro

* You said that applications request services
from the operating system via syscall, but ...

* |'ve been writing all sort of useful applications
and | never ever saw a “syscall” !!!

* That’s right.

* |t was buried in the programming language
runtime library (e.g., libc.a)

* ... Layering

9/5/14 cs162 fald L# 19

OS run-time library

Proc
2 eee

OS

login

]
OS library

]
OS library m

OS

9/5/14 cs162 fald L# 20

A Kind of Narrow Waist

Word Processing
Compilers Web Browsers

Web Servers
Application / Service

Portable OS Library OS

User System Call

System
Portable OS Kernel

Software Platform support, Device Drivers

Hardware x86 PowerPC ARM
PCI

Ethernet (10/100/1000) 802.11a/b/g/n SCSI IDE Graphics

9/5/14 cs162 fald L# 21

Key Unix I/O Design Concepts

9/5/14

Uniformity

— file operations, device I/0, and interprocess communication through
open, read/write, close

— Allows simple composition of programs
* find | grep | wc...

Open before use
— Provides opportunity for access control and arbitration
— Sets up the underlying machinery, i.e., data structures
Byte-oriented
— Even if blocks are transferred, addressing is in bytes

Kernel buffered reads

— Streaming and block devices looks the same, read blocks yielding
processor to other task

Kernel buffered writes

— Completion of out-going transfer decoupled from the application,
allowing it to continue

Explicit close

cs162 fald L# 22

/O & Storage Layers

Application / Service

streams
High Level I/O
Low Level I/0O handles
Syscall registers
File System descriptors
/O Driver Commands and Data Transfers
[|
- |J_—|_Q Disks, Flash, Controllers, DMA

9/5/14 cs162 fald L# 23

The file system abstraction

* File
— Named collection of data in a file system

— File data
* Text, binary, linearized objects

— File Metadata: information about the file
* Size, Modification Time, Owner, Security info
* Basis for access control

* Directory
— “Folder” containing files & Directories
— Hierachical (graphical) naming

e Path through the directory graph

* Uniquely identifies a file or directory
— /home/ff/cs162/public_html/fald/index.html

— Links and Volumes (later)

9/5/14 cs162 fald L# 24

C high level File APl — streams (revie

* Operate on “streams” - sequence of bytes,
whether text or data, with a position

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *fp);

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise "

a+ ab+ Open for reading & writing. Created if does not exist. Read from begin ng\sﬁ? ite as
append \&\O

9/5/14 cs162 fald L# 25

Connecting Processes, Filesystem, and Users

* Process has a ‘current working directory’

 Absolute Paths
— /home/ff/cs152

* Relative paths
— index.html, ./index.html| - current WD
— ../index.html - parent of current WD
—~,~cs152 - home directory

9/5/14 cs162 fald L# 26

C API Standard Streams

 Three predefined streams are opened implicitly when the
program is executed.

— FILE *stdin —normal source of input, can be redirected
— FILE *stdout —normal source of output, can too
— FILE *stderr -diagnostics and errors

 STDIN / STDOUT enable composition in Unix

9/5/14 cs162 fald L# 27

C high level File APl — stream ops

#include <stdio.h>

// character oriented

int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size t fread(void *ptr, size t size of elements,
size t number of elements, FILE *a file);

size t fwrite(const void *ptr, size t size of elements,
size t number of elements, FILE *a file);

// formatted

int fprintf(FILE *restrict stream, const char *restrict
format, ...);

int fscanf(FILE *restrict stream, const char *restrict

format, ...);

9/5/14 cs162 fald L# 28

C Stream API positioning

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

High Level I/O

'Low Level I/0|
Syscall

File System

’Upper I/O Driver ‘

’ Lower I/O Driver‘

* Preserves high level abstraction of a uniform stream of
objects

9/5/14 cs162 fal4 L# 29

What’s below the surface ??

Application / Service

streams
High Level I/O
/ Low Level I/O HETEIES \
Syscall registers
File System descriptors
/O Driver Commands and Data Transfers
[_|
L]

Disks, Flash, Controllers, DMA /

B3

9/5/14 cs162 fald L# 30

C Low level I/O

* Operations on File Descriptors — as OS object
representing the state of a file

— User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, |int flags [, /mode t mode|])
int creat (const char *fi ame, mode_t/jsgé;

int close (int filed

Bit vector of:

* Access modes (Rd, Wr, ...)

* Open Flags (Create, ...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
9/5/14 cs162 fald L# 31

C Low Level: standard descriptors

#include <unistd.h>

STDIN FILENO - macro has value 0
STDOUT FILENO - macro has value 1
STDERR_FILENO - macro has value 2

int fileno (FILE *stream)

FILE * fdopen (int filedes, const char *opentype)

* Crossing levels: File descriptors vs. streams
 Don’t mix them!

9/5/14 cs162 fal4 L# 32

C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)

- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)

int fsync (int fildes) — wait for i/o to finish
void sync (void) — wait for ALL to finish

 When write returns, data is on its way to disk
and can be read, but it may not actually be
permanent!

9/5/14 cs162 fald L# 33

And lots more !

* TTYs versus files

* Memory mapped files

* File Locking

* Asynchronous I/O

* Generic /O Control Operations
* Duplicating descriptors

int dup2 (int old, int new)
int dup (int old)

9/5/14 cs162 fal4 L# 34

What’s below the surface ??

Application / Service

High Level I/O
Low Level I/0O

; Syscall

File System

|/O Driver
[_|

9/5/14 cs162 fald L#

streams

handles

registers
descriptors
Commands and Data Transfers

Disks, Flash, Controllers, DMA

35

SYSCALL

C' | syscalls.kernelgrok.com

m BCal [JucB []csi62 [cullermayeno WX/ Wikipedia Yahoo! [| News [] Popular [Imported From Safari

Linux Syscall Reference

Show | 10 * | entries Search:
Registers
a Name Definition
eax ebx ecx edx esi edi
0 sys_restart_syscall 0x00 - - - - - kernel/signal.c:2058
1 sys_exit 0x01 int error_code - - - - kernel/exit.c:1046
2 sys_fork 0x02 struct pt_regs * - - - - arch/alpha/kernel/entry.S:716
3 sys_read 0x03 unsigned int fd char __user *buf size_t count - - fs/read_write.c:391
4 sys_write 0x04 unsigned int fd const char __user size_t count - - fs/read_write.c:408
*buf
5 sys_open 0x05 const char __user int flags int mode = - fs/open.c:900
*filename
sys_close 0x06 unsigned int fd - - - - fs/open.c:969
7 sys_waitpid 0x07 pid_t pid int __user int options - - kernel/exit.c:1771
*stat_addr
8 sys_creat 0x08 const char __user int mode - - - fs/open.c:933
*pathname
9 sys_link 0x09 const char __user const char __user - - - fs/namei.c:2520
*oldname *newname
Showing 1 to 10 of 338 entries 2 3 4 5 Next Last

Generated from Linux kernel 2.6.35.4 using Exuberant Ctags, Python, and DataTables.
Project on GitHub. Hosted on GitHub Pages.

* Low level lib parameters are set up in registers
and syscall instruction is issued

9/5/14 cs162 fal4 L# 36

Internal OS File Descriptor

* Internal Data Structure describing everything

about the file

— Where it resides
— |ts status

— How to access it

9/5/14 cs162 fald L#

[Ixr.free-electrons.com/source/include/linux/fs.h#L747

784 1 __attribute__((aligned(4)));

—-ar

[feca [Juce [csie2 [cullermayeno W Wikipedia [Yahoo! [News [
746
747 struct file {
748 union {
749 struct llist_node fu_llist;
750 struct rcu_head fu_rcuhead;
751 } f_u;
752 struct path f_path;
753 #define f_dentry f_path.dentry
754 struct inode *f_inode; /* cacl
755 const struct file_operations *f_op;
756
757 /¥
758 * Protects f_ep_links, f_flags.
759 * Must not be taken from IRQ context.
760 */
761 spinlock_t f_lock;
762 atomic_long_t f_count;
763 unsigned int f_flags;
764 fmode_t f_mode;
765 struct mutex f_pos_lock;
766 loff_t f_pos;
767 struct fown_struct f_owner;
768 const struct cred *f_cred;
769 struct file_ra_state f_ra;
770
771 ub4 f_version;
772 #ifdef CONFIG_SECURITY
773 void *f_security;
774 #endif
775 '* needed for tty driver, and maybe others */
776 void *private_data;
777
778 #ifdef CONFIG_EPOLL
779 /* Used by fs/eventpoll.c to link all the hook:
780 struct list_head f_ep_links;
781 struct list_head f_tfile_1llink;
782 #endif /* #ifdef CONFIG_EPOLL */
783 struct address_space *f_mapping;

/* lest something weir:

37

File System: from syscall to driver

In fs/read_write.c

ssize t vfs read(struct file *file, char user *buf, size t count, loff t *pos)

{
ssize t ret;
if (!(file->f mode & FMODE READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio read))
return -EINVAL;
if (unlikely(!access ok (VERIFY WRITE, buf, count))) return -EFAULT;
ret = rw verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do sync read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f path.dentry);
add rchar(current, ret);
}
inc_syscr(current);
}
return ret;
}

9/5/14 cs162 fald L# 38

Low Level Driver

e Associated with particular hardware device
* Registers / Unregisters itself with the kernel

e Handler functions for each of the file
operations

9/5/14 cs162 fald L# 39

So what happens when you fgetc?

Application / Service

streams
High Level I/O
handles
Low Level I/O .
syscall registers
File System descriptors
I/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

9/5/14 cs162 fald L#

