Implementing Transactions
for File System Reliability

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 27
October 31, 2014

Reading: A&D 14.1
HW 5 out
Proj 2 final 11/07

File System Reliability

 What can happen if disk loses power or
machine software crashes?

— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* File system wants durability (as a minimum!)

— Data previously stored can be retrieved (maybe
after some recovery step), regardless of failure

Achieving File System Reliability

Problem posed by machine/disk failures
Transaction concept

Approaches to reliability

— Careful sequencing of file system operations
— Copy-on-write (WAFL, ZFS)

— Journalling (NTFS, linux ext4)

— Log structure (flash storage)

Approaches to availability
— RAID

Storage Reliability Problem

* Single logical file operation can involve
updates to multiple physical disk blocks

— inode, indirect block, data block, bitmap, ...

— With remapping, single update to physical disk

block can require multiple (even lower level)
updates

At a physical level, operations complete one at
a time
— Want concurrent operations for performance

* How do we guarantee consistency regardless
of when crash occurs?

The ACID properties of Transactions

Transaction is a group of operations:

Atomicity: all actions in the transaction happen, or none
happen

Consistency: transactions maintain data integrity, e.qg.,
— Balance cannot be negative
— Cannot reschedule meeting on February 30

Isolation: execution of one transaction is isolated from
that of all others; no problems from concurrency

Durability: if a transaction commits, its effects persist
despite crashes

Fast AND Right ??7?

* The concepts related to transactions
appear in many aspects of systems

— File Systems
liabili
— Data Base systems Reliability _Ferforman
— Concurrent Programming
 Example of a powerful, elegant concept
simplifying implementation AND
achieving better performance.
 The key is to recognize that the system

behavior is viewed from a particular
perspective.

— Properties are met from that perspective

10/27/14 cs162 fald L25 6

e RSITY
\;A :,\
-z 2NN
% e .\
g
A

&
2
T

S
)

R P‘/l & ‘_.‘.\
Q,fl-’n\

Reliability Approach #1: Careful Ordering

e Sequence operations in a specific order

— Careful design to allow sequence to be
interrupted safely

* Post-crash recovery

— Read data structures to see if there were any
operations in progress

— Clean up/finish as needed

e Approach taken in FAT, FFS (fsck), and many
app-level recovery schemes (e.g., Word)

FFS: Create a File

Normal operation: Recovery:

* Allocate data block * Scan inode table
 Write data block e If any unlinked files (not
e Allocate inode in any directory), delete
e \Write inode block Compare free block

 Update bitmap of free ’?rlgensap against inode
blocks

. : PR e Scan directories for
gfrf,aet_e>dﬁ'[§crfﬁm,";'f htile missing update/access

e times
 Update modify time for

director
Y Time proportional to size of

disk

Application Level

Normal operation: Recovery:

 Write name of each open ¢ On startup, see if any files
file to app folder were left open

 Write changes to backup ¢ If so, look for backup file

file * If so, ask user to compare
 Rename backup file to be versions

file (atomic operation
provided by file system)

e Delete list in app folder
on clean shutdown

Reliability Approach #2:
Copy on Write File Layout
 To update file system, write a new version of
the file system containing the update
— Never update in place
— Reuse existing unchanged disk blocks
* Seems expensive! But
— Updates can be batched

— Almost all disk writes can occur in parallel

* Approach taken in network file server
appliances (WAFL, ZFS)

Transactional File Systems

* Journaling File System

— Applies updates to system metadata using
transactions (using logs, etc.)

— Updates to non-directory files (i.e., user stuff) is
done in place (without logs)

— Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4
* Logging File System

— All updates to disk are done in transactions

10/27/14 cs162 fald L25 11

Logging File Systems

Instead of modifying data structures on disk
directly, write changes to a journal/log

— Intention list: set of changes we intend to make
— Log/Journal is append-only

Once changes are in the log, it is safe to apply
changes to data structures on disk

— Recovery can read log to see what changes were
intended

— Can take our time making the changes
* As long as new requests consult the log first

Once changes are copied, safe to remove log

But, ...
— If the last atomic action is not done ... poof ... all gone

THE atomic action

e Write a sector on disk

10/27/14 cs162 fald L25 13

Redo Logging

* Prepare

— Write all changes (in
transaction) to log

e Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

e Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— Garbage collect log

Example: Creating a file

* Find free data block(s)

* Find free inode entry @

* Find dirent insertion point ™ eeoRace
_______________________________ L Data blocks
 Write map (i.e., mark used) inode table
* Write inode entry to point Dirte.ctory

to block(s)

 Write dirent to point to
inode

10/27/14 cs162 fal4 L25 15

Ex: Creating a file (as a transaction)

* Find free data block(s)

* Find free inode entry ~

* Find dirent insertion point sl
—'_.I:-:I I FreeSpace

_______________________________ map

* Write map (used)

 Write inode entry to point
to block(s)

 Write dirent to point to
inode

Data blocks

Inode table

Directory
entries

tail head

done pending

Log in non-volatile storage (Flash or on Disk)

start

commitﬁ_

10/27/14 cs162 fal4 L25 16

ReDo log

e After Commit

e All access to file system
first looks in log

* Eventually copy changes

to disk

tail

. Free Space

map

Data blocks

Inode table

Directory
entries

tail tgj| head

!

done

e

commitﬁj

Log in non-volatile storage (Flash) pen

10/27/14 cs162 fal4 L25

ding

4

17

Crash during logging - Recover

* Upon recovery scan

N
the long .

. F S
* Detect transaction -

start with no commit | Data blocks
* Discard log entries Inode table
* Disk remains Directory
entries
unchanged
tail head
! A/
done pending =
Log in non-volatile storage (Flash or on Disk) / \

10/27/14 cs162 fal4 L25 18

Recovery After Commit

* Scan log, find start

* Find matching commit R
. . Free Space
 Redo it as usual map
— Or just let it happen Data blocks
|ater Inode table
Directory
entries
tail head
. !
done pending = IS
fe]|

Log in non-volatile storage (Flash or on Disk)

10/27/14 cs162 fal4 L25 19

What if had already started writing back
the transaction ?

* /dempotent — the result does not change if the
operation is repeat several times.

* Just write them again during recovery

10/27/14 cs162 fald L25 20

What if the uncommitted transaction was @2
discarded on recovery? “

* Do it again from scratch
* Nothing on disk was changed

10/27/14 cs162 fald L25 21

What if we crash again during recovery?

* |[dempotent

* Just redo whatever part of the log hasn’t been
garbage collected

10/27/14 cs162 fald L25 22

Redo Logging

* Prepare

— Write all changes (in
transaction) to log

e Commit

— Single disk write to make
transaction durable

Redo
— Copy changes to disk

e Garbage collection
— Reclaim space in log

* Recovery
— Read log

— Redo any operations for
committed transactions

— lgnore uncommitted
ones

— Garbage collect log

Can we interleave transactions in the log?

~aro|f-

* This is a very subtle question
* The answer is “if they are serializable”

— i.e., would be possible to reorder them in series
without violating any dependences

* Deep theory around consistency,

serializability, and memory models in the OS,
Database, and Architecture fields, respectively

— A bit more later --- and in the graduate course...

cs162 fal4d L25

head

start

pending

commit

commit

10/27/14 24

Back of the Envelope ...

10/27/14

Assume 5 ms average seek+rotation

And 100 MB/s transfer .
eliability
— 4 KB block => .04 ms ~"Performa

100 random small create & write ha
— 4 blocks each (free, inode, dirent + data)

NO DISK HEAD OPTIMIZATION! = FIFO
— Must do them in order

100x4 +5 ms =2 sec
Log writes: 5 ms + 400 x 0.04 ms =6.6 ms
Get to respond to the user almost immediately

Get to optimize write-backs in the background
— Group them for sequential, seek optimization
What if the data blocks were huge?

cs162 fald L25 25

Performance

* Log written sequentially
— Often kept in flash storage

* Asynchronous write back

— Any order as long as all changes are logged before
commit, and all write backs occur after commit

e Can process multiple transactions
— Transaction ID in each log entry

— Transaction completed iff its commit record is in
log

Redo Log Implementation

Volatile Memory

Pending write—backs

Log-head pointer . D D D D D D M Log—tail pointer

"\ Persistent Storage \
Log—head pointer | - N . \‘\

Log:) ' |

= / / |

i i Mixed: i

. | Writeback ! WB Complete ! P
fee ! Complete : Committed : e
! | Uncommitted :
1 o i newer
older Garbage Collected Eligible for GC In Use Available for

New Records

Isolation

Process A: Process B:
move foo from dir xto diry || grep across aandb
mv x/foo y/ grep 162 x/* y/* > log

* Assuming 162 appears only in foo,

* what are the possible outcomes of B without
transactions?

* If x, yand a,b are disjoint
e Ifx==aandy-==

10/27/14 cs162 fald L25 28

Isolation

Process A: Process B:
move foo from dir xto diry ||grep across x and y
mv x/foo y/ grep 162 x/* y/* > log

* Assuming 162 appears only in foo,
* And Ais done as a transaction

 What if grep starts after the changes are loggend
but before they are committed?

* Must prevent the interleaving
 Also what we do to isolate transactions

10/27/14 cs162 fald L25 29

What do we use to prevent interleaving?

* Locks!
* But here we need to acquire multiple locks

 We didn’t cover it specifically, but wherever
we are acquiring multiple locks there is the
possibility of deadlock!

— More on how to avoid that later

10/27/14 cs162 fald L25 30

Two-Phase Commit (2PC)

* Acquire all the locks & log the transaction
* Then commit

e And release the locks

10/27/14 cs162 fald L25 31

Two Phase Locking

 Two phase locking: release locks only AFTER
transaction commit

— Prevents a process from seeing results of another
transaction that might not commit

Locks — in @ new form

“Locks” to control access to data

Two types of locks:

— shared (S) lock — multiple concurrent
transactions allowed to operate on data

— exclusive (X) lock — only one transaction can
operate on data at a time

Lock

Compatibility | | |X

Matrix S \/ —
X |— |—

Two-Phase Locking (2PL)

1) Each transaction must obtain:
- S (shared) or X (exclusive) lock on data before reading,
- X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a
“shrinking phase” ,

% Lock Point!
4 : o
o | Growing Shrinking
Avoid deadlock T3 Phase Phase
by acquiring locks % 2
in some 91

|
|
|
|
|
|
lexicographic order :H:O :
115 17 19 Time
I
|
|

Two-Phase Locking (2PL)

« 2PL guarantees that the dependency graph of a
schedule is acyclic.

 For every pair of transactions with a conflicting lock,
one acquires is first > ordering of those two - total
ordering.

» Therefore 2PL-compatible schedules are conflict
serializable.

- Note: 2PL can still lead to deadlocks since locks are
acquired incrementally.

- An important variant of 2PL is strict 2PL, where all
locks are released at the end of the transaction.

Transaction Isolation

Process A: Process B:
LOCK x, y LOCK x, y and 1og

grep across x and y

grep 162 x/* y/* > log
Commit and Release x, vy, log

move foo from dir x to diry

mv x/foo y/

Commit and Release X, Y

e grep appears either before or after move
* Need log/recover AND 2PL to get ACID

10/27/14 cs162 fald L25 36

Serializability

* With two phase locking and redo logging,
transactions appear to occur in a sequential
order (serializability)

— Either: grep then move or move then grep

— If the operations from different transactions get
interleaved in the log, it is because it is OK

* 2PL prevents it if serializability would be violated
* Typically, because they were independent

* Other implementations can also provide
serializability

— Optimistic concurrency control: abort any transaction
that would conflict with serializability

Caveat

* Most file systems implement a transactional
model internally

— Copy on write
— Redo logging

* Most file systems provide a transactional model
for individual system calls
— File rename, move, ...

* Most file systems do NOT provide a transactional
model for user data
— Historical artifact ? - quite likely

— Unfamiliar model (other than within OS’s and DB’s)?
* perhaps

10/27/14 cs162 fald L25 39

Atomicity

A transaction
— might commit after completing all its operations, or

— it could abort (or be aborted) after executing some
operations

« Atomic Transactions: a user can think of a
transaction as always either executing all its
operations, or not executing any operations at all

— Database/storage system /ogs all actions so that it
can undo the actions of aborted transactions

Consistency

Data follows integrity constraints (ICs)

If database/storage system is consistent before
transaction, it will be after

System checks ICs and if they fail, the transaction
rolls back (i.e., is aborted)

— A database enforces some ICs, depending on the ICs
declared when the data has been created

— Beyond this, database does not understand the
semantics of the data (e.g., it does not understand
how the interest on a bank account is computed)

|Isolation

« Each transaction executes as if it was running by
itself

— It cannot see the partial results of another transaction

. Techniques:
— Pessimistic — don't let problems arise in the first place

— Optimistic — assume conflicts are rare, deal with them
after they happen

Durability

« Data should survive in the presence of
— System crash
— Disk crash - need backups

All committed updates and only those updates are reflected in the
file system or database

-~ Some care must be taken to handle the case of a crash
occurring during the recovery process!

