Memory Mapped Files &
Transactions

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 26
October 27, 2014

Reading: A&D 14.1
HW 5 out
Proj 2 final 11/07

File System Summary (1/2)

File System:

— Transforms blocks into Files and Directories

— Optimize for size, access and usage patterns

— Maximize sequential access, allow efficient random access

— Projects the OS protection and security regime (UGO vs ACL)

File defined by header, called “inode”

Multilevel Indexed Scheme

— inode contains file info, direct pointers to blocks, indirect blocks,
doubly indirect, etc..

— NTFS uses variable extents, rather than fixed blocks, and tiny
files data is in the header

4.2 BSD Multilevel index files

— Inode contains pointers to actual blocks, indirect blocks, double
iIndirect blocks, etc.

— Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization

10/27/14 cs162 fald L25 2

File System Summary (2/2)

* Naming: act of translating from user-visible

names to actual system resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files

 File layout driven by freespace management

— Integrate freespace, inode table, file blocks and
directories into block group

» Copy-on-write creates new (better
positioned) version of file upon burst of writes

* Deep interactions between memory
management, file system, and sharing

10/27/14 cs162 fald L25 3

Bring Distant Concepts together

* Can we use files for interprocess
communication?

— Yes, but want flock, in addition to fflush!

* Can we use the file namespace, operations,
etc. at the performance of memory?
— Without the durability

* Can we use the virtual memory machinery to
access files with load/store instructions?
— Map files into the virtual address space

— Controlled sharing between processes by using
file for rendezvous

10/27/14 cs162 fald L25 4

In-Memory File System Structures &

open (file name)

directory structure

directory structure

file-control block

user space

kernel memory

secondary storage

* Open system call:

— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

10/27/14

cs162 fal4d L25

RSITYy
s E==NAON
Q

In-Memory File System Structures &

index
N el
/
/ data blocks
—

read (index) T ——

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

» Read/write system calls:

— Use file handle to locate inode
— Perform appropriate reads or writes

10/27/14 cs162 fald L25 6

Memory Mapped Files

* Traditional I/O involves explicit transfers
between buffers in process address space to
regions of a file

— This involves multiple copies into caches in
memory, plus system calls

 What if we could “map” the file directly into
an empty region of our address space
— Implicitly “page it in” when we read it
— Write it and “eventually” page it out

* Executable file is treated this way when we
exec the process !!

10/27/14 cs162 fald L25 7

Recall: Who does what when ?

: . page#
|nstM|on—> MMU 1> w}

/ \ PT
exception Ae fault | offselr | T

Operating System

,,/"l:lpdate PT entry

Page Fault Handler

~ oad page from disK

scheduler _L |

10/27/14 _)CJ-A fald L25 8

Using Paging to mmap files

eeeeeeeeeeeee

Process virtual address physical aadress
: . page#
Instrbélon —> MMU PT w}
/ \ offset —
A e fau It /] /????‘.«"ﬁf???"ff

aaaaaaaaaaa

eeeeeeeeeeeee

Operating System - .
Create/PT entries \
Page Fault Handler for mapped region N
as “baczked” by file '

,
’
w
’
/7
7 7
7 ’
7 ’

File

scheduler

mmap file to region of VAS
10/27/14 UJA fald 125 9

mmap system call

MMAP(2) BSD System Calls Manual MMAP(2)
NAME

mmap —— allocate memory, or map files or devices into memory
LIBRARY

Standard C Library (libc, -1lc)

SYNOPSIS
#include <sys/mman.h>

void *
mmap(void xaddr, size t len, int prot, int flags, int fd,
off_t offset);

DESCRIPTION
The mmap() system call causes the pages starting at addr and continuing
for at most len bytes to be mapped from the object described by fd,
starting at byte offset offset. If offset or len is not a multiple of

N PP . N PP, o | M e s e wn e e oascedonemel oeoemd Al oo £ 5 el

* May map a specific region or let the system find one for
you

— Tricky to know where the holes are

* Used both for manipulating files and for sharing
between processes

10/27/14 cs162 fald L25 10

An example

#include <sys/mman.h>
int something = 162;

int main (int argc, char *argv[]) {
int infile;
char *mfile;
void *sadddr = 0;
something++;
printf("Data at: %161x\n", (long unsigned int) &something);
printf("Heap at : %161x\n", (long unsigned int) malloc(1l));
printf("Stack at: %161x\n", (long unsigned int) &mfile);

mfile = mmap(0, 10000, PROT READ|PROT WRITE, MAP FILE|MAP SHARED,
if (mfile == MAP FAILED) {perror("mmap failed"); exit(1l);}

printf("mmap at : %161x\n", (long unsigned int) mfile);

puts(mfile);

strcpy(mfile+20,"Let's write over it");
close(infile);

return 0;

infile,

0);

10/27/14 cs162 fald L25

11

Sharing through Mapped Files
— 0x000... © e 0x000...

nstructions instructions

data . | data
File _L |
heap l | heap |,
Memory

stack T stack T

0S OS
OxFFF... OxFFF...

10/27/14 cs162 fald L25 12

Admin Breaks

* Next week: guest lectures

— Prof. Stoica — kev/val store
— Kaifei — RPC, Vaishaal — NFS

e Prof. Culler will not be available for office
hours

— This W/Th and Next Week
e Midterm Il on 11/14 6-7:30 Pimintel

10/27/14 cs162 fald L25 13

Reliable Storage

* How can we make a storage system more
reliable than the physical devices that it is
built out of?

— Disks fail
— SSDs wear out

 Redundancy

10/27/14 cs162 fald L25 14

Example: Replicated Storage

e Suppose we write each data block to disks on
100 machines spread around the planet.

* Are we likely to be able to read the data even
if disk(s) crash?

10/27/14 cs162 fald L25 15

Definitions
* Asystem is reliable if it performs its intended

function.

* A system is available if it currently can
respond to a request.

* A storage system’s reliability is the probability
that it will continue to be reliable for some
specified period of time.

* |ts availability is the probability that it will be
available at any given time.

10/27/14 cs162 fald L25 16

Replicated Storage Example

* Highly reliable
* Highly available for reads

* Low availability for writes

— Can’t write if any one is not up

—

"

10/27/14 cs162 fal4 L25 17

Threats to Reliability

* Interrupted Operation

— Crash or power failure in the middle of a series of
related updates may leave stored data in an
inconsistent state.

— e.g.: transfer funds from BofA to Schwab. What if
transfer is interrupted after withdrawal and

before deposit

e Loss of stored data

— Failure of non-volatile storage media may cause
previously stored data to disappear or be
corrupted

10/27/14 cs162 fald L25 18

Solutions

* Transactions for Atomic Updates

— Ensure that multiple related updates are performed
atomically

— i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates

— Most modern file systems use transactions internally
to update the many pieces

— Many applications implement their own transactions
 Redundancy for media failures

— Redundant representation (error correcting codes)

— Replication

— E.g., RAID disks

10/27/14 cs162 fald L25 19

Transactions

* Closely related to critical sections in manipulating
shared data structures

* Extend concept of atomic update from memory
to stable storage

— Atomically update multiple persistent data structures

* Like flags for threads, many ad hoc approaches

— FFS carefully ordered the sequence of updates so that
if a crash occurred while manipulating directory or
inodes the disk scan on reboot would detect and
recover the error, -- fsck

— Applications use temporary files and rename

10/27/14 cs162 fald L25 20

Key concept: Transaction

* An atomic sequence of actions (reads/
writes) on a storage system (or database)

 That takes it from one consistent state to
another

] transaction
consistent state 1 J consistent state 2

Typical Structure

* Begin a transaction — get transaction id
* Do a bunch of updates

— If any fail along the way, roll-back

e Commit the transaction

10/27/14 cs162 fald L25 22

“Classic” Example: Transaction

BEGIN; -—-BEGIN TRANSACTION
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob’';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch name FROM accounts
WHERE name = 'Bob');

COMMIT; --COMMIT WORK

Transfer $100 from Alice’ s account to Bob’s account

The ACID properties of Transactions

Atomicity: all actions in the transaction happen, or
none happen

Consistency: transactions maintain data integrity,
e.g.,

— Balance cannot be negative

— Cannot reschedule meeting on February 30

Isolation: execution of one transaction is isolated
from that of all others; no problems from concurrency

Durability: if a transaction commits, its effects
persist despite crashes

