File System Design: advanced
topics

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 25
October 27, 2014

Reading: A&D 13.3,9.6
HW 4 due 10/27
Proj 2 final 11/07

e The One vs The All

Collective Individual
Throughput ‘ Response Time

* The Many vs The Few

— Guided by workload measurements

Lots of Little Few Huge
* Simplicity vs Versatility =~ bt ' Objects

— Fixed blocks vs Variable extents

* Reliability vs Performance

10/27/14 cs162 fald L25 2

Recall: Components of a File System

File path

File number

Data blocks

10/27/14 cs162 fal4 L25 3

Recall: directories

e Stored in files, can be read, but don’t
— System calls to access directories

Jusr
— Open / Creat traverse the structure
— mkdir /rmdir add/remove entries
— |_|nk/ Unlink S usr/lib Jusr/lib4.3
* Link existing file to a directory
— Not in FAT ! N

* Forms a DAG h

* libc support fust/libffoo
— DIR * opendir (const char *dirname)

— struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent

**result)
10/27/14 cs162 fald L25 4

Jusr/lib4.3/foo

When can a file be deleted ?

* Maintain reference count of links to the file.
* Delete after the last reference is gone.

Jusr

/usr/lib Jusr/lib4.3

Jusr/lib/foo

Jusr/lib4.3/foo

10/27/14 cs162 fald L25 5

Links

e Hard link

— Sets another directory entry to contain the file
number for the file

— Creates another name (path) for the file
— Each is “first class”
e Soft link or Symbolic Link

— Directory entry contains the name of the file
— Map one name to another name

10/27/14 cs162 fald L25

Large Directories: B-Trees

Search for hash("out2”) = 0x0000c194
............... B+Tree Root
Before |[00ad1102 |b0bf8201 cff1a412
Child Pointer L .- ;
; B+Tree Node B+Tree Node B+Tree Node
Before OOODC1 95 (00018201
Child Pointer | :
B+ Tree L&af ... B+Tree Leaf B+Tree Leaf
Hash [|0000a0d1|0000b971 0000c194
Entry Pointer - P B
.- o '"''''"'"','!":;:}':--f-:—-mr'-f-vr-,-'-:‘rf.'.'.’.-..-.:-..=__-_:,_’_,:,_;_______________Mmm“m_m___t o
Name . .. file1 file2 file9841 outl out2 out16341
File Number [36210429| 983211 239341 | 231121 243212 | 841013 | 841014 . 324114
“out2”is file 841014
10/27/14 cs162 fald L25 7

Data Structure Trade-offs

* Contiguous arrays
— FAT, inode tables, disk blocks, ..., page tables, ...
— Direct index (constant time access), linear search
— Compact, easy to grow — up to a limit

e Linked lists
— Simple, Relatively compact
— Linear time index or search => good for few

* Tree-like structures (tree, b-tree, ..., inode, ...)
— Directories, ... , Multi-level page tables
— Complex, Multiple Pointers (but mix in direct)
— Log time index or search

10/27/14 cs162 fald L25 8

NTFS

e Variable length extents
— Rather than fixed blocks

e Everything (almost) is a sequence of
<attribute:value> pairs

— Meta-data and data
 Mix direct and indirect freely

10/27/14 cs162 fald L25 9

NTFS

* Master File Table
— Flexible 1KB storage for metadata and data
— Variable-sized attribute records (data or metadata)
— Extend with variable depth tree (non-resident)

e Extents —variable length contiguous regions
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)
— File create can provide hint as to size of file

* Journaling for reliability
— Discussed next lecture

10/27/14 cs162 fald L25 10

NTFS Small File

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

MFT Record (small file)

Std. Info. | File Name Data (resident) (free)

Attribute list

10/27/14 cs162 fald L25 11

NTFS Medium File

Start
Master File Table Length

r\-_ %
X
©
©
a)

MET Record Start + Lengthl_,

" | Std.Info. | FleName | Data (nonresident) | (free)
Start .
!
Length L

T &
]
X
©
©
a)

Start + Lengthl_,

10/27/14 cs162 fald L25 12

NTFS Multiple Indirect Blocks

MFT Record
— _.(big/fra mented file)
..... Std. Info. | At List Data (nonresident)
"""" ! — =

......

Data (nonresident) '
ol

) | - -

:. Data (nonresident)

— - —
:; Data (nonresident)
—) o —

10/27/14 w 13

Master File Table
] MFT Record
(huge/badly-fragmented file)

Std. Info. Attr. List (nonresident)
| |

I .oe '
2@\ Extent with part of attribute list
Data (nonresident)

|

-

Data (nonresident)

[

— —

Data (nonresident)

]
«=« | Extent with part of attribute list
B) Data (nonresident)
- |
— —

Data (nonresident)

| —

.=« | Extent with part of attribute list

Data (nonresident)

Data (nonresident)

l l]
10/27/14 cs162 fald L25 14

Quizzie: File Systems

« Q1:True _ False _ A hard-link is a pointer to other file
« Q2: True _ False _ inumber is the id of a block

« Q3: True _ False _ Typically, directories are stored as
files

« Q4:True _ False _ Storing file headers on the
outermost cylinders minimizes the seek time

10/27/14 cs162 fald L25 15

Quizzie: File Systems

10/27/14

Q1: True _ False X A hard-link is a pointer to other file
Q2: True _ False X inumber is the id of a block

Q3: True X False _ Typically, directories are stored as
files

Q4: True _ False X Storing file headers on the
outermost cylinders minimizes the seek time

cs162 fald L25 16

Towards Copy-on-Write

* Files are for durable storage AND flexible process-
independent, protected namespace

* Files grow incrementally as written

— Update-in-place file systems start with a basic chunk and
append (possibly larger) chunks as file grows

— Transition from random access to large sequential
* Disks trends: huge and cheap, high startup

* Design / Memory trends: cache everything

— Reads satisfied from cache, buffer multiple writes and do
them all together

* Application trends: make multiple related changes
to a file and commit all or nothing

10/27/14 cs162 fald L25 17

Emulating COW @ user level

* Transform file foo to a new version

* Open/Create a new file foo.v
— where v is the version #

* Do all the updates based on the old foo
— Reading from foo and writing to foo.v
— Including copying over any unchanged parts

 Update the link

— |n —f foo foo.v

e Does it work?

10/27/14 cs162 fald L25

18

Creating a New Version

old version new version

\
e ~M4~¢~\

= B
BN N - B

Write ?

* |f file represented as a tree of blocks, just
need to update the leading fringe

10/27/14 cs162 fal4 L25 19

Creating a New Version

old version new version

ﬂ " m R
o o e é:;i

* |f file represented as a tree of blocks, just
need to update the leading fringe

10/27/14 cs162 fal4 L25 20

ZFS

10/27/14

Variable sized blocks: 512 B - 128 KB
Symmetric tree
— Know if it is large or small when we make the copy

Store version number with pointers

— Can create new version by adding blocks and new
pointers

Buffers a collection of writes before creating a
new version with them

Free space represented as tree of extents in each
block group

— Delay updates to freespace (in log) and do them all
when block group is activated

cs162 fald L25 21

10/27/14 cs162 fald L25 22

In-Memory File System Structures &

directory structure

open (file name)

directory structure file-control block

user space kernel memory secondary storage

* Open system call:
— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

10/27/14 cs162 fald L25 23

RSITYy
s E==NAON
Q

In-Memory File System Structures &

index
N el
/
/ data blocks
—

read (index) T ——

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

» Read/write system calls:

— Use file handle to locate inode
— Perform appropriate reads or writes

10/27/14 cs162 fald L25 24

Memory Mapped Files

* Traditional I/O involves explicit transfers
between buffers in process address space to
regions of a file

— This involves multiple copies into caches in
memory, plus system calls

 What if we could “map” the file directly into
an empty region of our address space
— Implicitly “page it in” when we read it
— Write it and “eventually” page it out

* Executable file is treated this way when we
exec the process !!

10/27/14 cs162 fald L25 25

Recall: Who does what when ?

: . page#
|nstM|on—> MMU 1> w}

/ \ PT
exception Ae fault | offselr | T

Operating System

,,/"l:lpdate PT entry

Page Fault Handler

~ oad page from disK

scheduler _L |

10/27/14 J fald L25 26

Using Paging to mmap files

eeeeeeeeeeeee

Process virtual address physical aadress
: . page#
Instrbélon —> MMU PT w}
/ \ offset —
A e fau It /] /????‘.«"ﬁf???"ff

aaaaaaaaaaa

eeeeeeeeeeeee

Operating System - .
Create/PT entries \
Page Fault Handler for mapped region N
as “baczked” by file '

,
’
w
’
/7
7 7
7 ’
7 ’

File

scheduler

mmap file to region of VAS
10/27/14 _)clifa14 L25 27

mmap system call

MMAP(2) BSD System Calls Manual MMAP(2)
NAME

mmap —— allocate memory, or map files or devices into memory
LIBRARY

Standard C Library (libc, -1lc)

SYNOPSIS
#include <sys/mman.h>

void *
mmap(void xaddr, size t len, int prot, int flags, int fd,
off_t offset);

DESCRIPTION
The mmap() system call causes the pages starting at addr and continuing
for at most len bytes to be mapped from the object described by fd,
starting at byte offset offset. If offset or len is not a multiple of

N PP . N PP, o | M e s e wn e e oascedonemel oeoemd Al oo £ 5 el

* May map a specific region or let the system find one for
you

— Tricky to know where the holes are

* Used both for manipulating files and for sharing
between processes

10/27/14 cs162 fald L25 28

An example

#include <sys/mman.h>
int something = 162;

int main (int argc, char *argv[]) {
int infile;
char *mfile;
void *sadddr = 0;
something++;
printf("Data at: %161x\n", (long unsigned int) &something);
printf("Heap at : %161x\n", (long unsigned int) malloc(1l));
printf("Stack at: %161x\n", (long unsigned int) &mfile);

mfile = mmap(0, 10000, PROT READ|PROT WRITE, MAP FILE|MAP SHARED,
if (mfile == MAP FAILED) {perror("mmap failed"); exit(1l);}

printf("mmap at : %161x\n", (long unsigned int) mfile);

puts(mfile);

strcpy(mfile+20,"Let's write over it");
close(infile);

return 0;

infile,

0);

10/27/14 cs162 fald L25

29

Sharing through Mapped Files
— 0x000... © e 0x000...

nstructions instructions

data . | data
File _L |
heap l | heap |,
Memory

stack T stack T

0S OS
OxFFF... OxFFF...

10/27/14 cs162 fald L25 30

File System Summary (1/2)

File System:

— Transforms blocks into Files and Directories

— Optimize for size, access and usage patterns

— Maximize sequential access, allow efficient random access

— Projects the OS protection and security regime (UGO vs ACL)

File defined by header, called “inode”

Multilevel Indexed Scheme

— inode contains file info, direct pointers to blocks, indirect blocks,
doubly indirect, etc..

— NTFS uses variable extents, rather than fixed blocks, and tiny
files data is in the header

4.2 BSD Multilevel index files

— Inode contains pointers to actual blocks, indirect blocks, double
iIndirect blocks, etc.

— Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization

10/27/14 cs162 fald L25 31

File System Summary (2/2)

* Naming: act of translating from user-visible

names to actual system resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files

 File layout driven by freespace management

— Integrate freespace, inode table, file blocks and
directories into block group

» Copy-on-write creates new (better
positioned) version of file upon burst of writes

* Deep interactions between memory
management, file system, and sharing

10/27/14 cs162 fald L25 32

