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Recall: Components of a File System

File path

File number

Data blocks
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Recall: FAT (File Allocation Table)

* File is collection of disk blocks

* FAT s linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of root of ool I G
block list for the file file number ’*‘._
' ' —» 31; :I File 31, Block 0
* Grow file by allocating free blocks AT Sl

and linking them in File 17, Block 1

A

 Example Create file, write, write

File 2 number

] File 31, Block 3
free J File 57, Block O
o File 31, Block 2
N-1: N-1:
mem
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FAT Assessment

* Time to find block ?? 5 5 5 02
* Free list usually just a bit vector FAT Disk Blocks
. . O: O:
e Next fit algorithm o
ree [:::::::
* Block layout for file ??? —> 3L 7 File 31, Block 0
file number e File 31, Block 1
e Sequential Access ??7? : File 17 , Block 1
e Random Access ??? T
* Fragmentation ??? — File 31, Block 3
. _ — i File 17, Block 0
 Small files ??7? file 2 number {7
° B|g ﬁles ??? . - File 31, Block 2
N-1: N-1:
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What about the Directory?

end

f
“/home/tom” fcl)le

Name | Music Work
File Number 5268830 88026158 35002320 85200219

file 5268830

| footxt | F
66212871 Space

~_

Free
Space

Next |

e Essentially a file containing
<file_name: file_number> mappings

* Free space for new entries

* |n FAT: attributes kept in directory (!!!)
* Each directory a linked list of entries
 Where do you find root directory ( “/” )
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Directory Structure (Con’t)

- How many disk accesses to resolve “/my/book/
count’ ?
— Read in file header for root (fixed spot on disk)

— Read in first data block for root

« Table of file name/index pairs. Search linearly — ok since
directories typically very small

— Read in file header for “my”
— Read in first data block for “my”; search for “book”
— Read in file header for “book”
— Read in first data block for “book”; search for “count”
— Read in file header for “count”
« Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute
path (say CWD="/my/book” can resolve “count”)
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Big FAT security holes

* FAT has no access rights
 FAT has no header in the file blocks

e Just gives and index into the FAT
— (file number = block number)
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Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL

o M O St ﬁ I e S a r e S m a I | ;J:(;versity of Wisconsin, Madison

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

* Most of the space is occupied by the rare big
ones

A Five-Year Study of File-System Metadata ~ ° 9:9

12000

Files per file system
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File size (bytes, log scale, power-of-2 bins) Containing file size (bytes, log scale, power-of-2 bins)
Fig. 2. Histograms of files by size. Fig. 4. Histograms of bytes by containing file size.
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III

So what about a “real” file system

e Meet the inode

Inode Array Triple  Double
Indirect Indirect Indirect Data
/ Inode  Blocks Blocks Blocks Blocks

_ File
file_number Metadata /‘9

—l \ Direct T
Pointers D

Indirect \Po'lnter /D\B—D
Dbl. Indirect Ptr. g1 . ‘D
Tripl. Indrect Ptr: —’D\D\—':%\D
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Unix Fast File System

* File Number is index into inode arrays

 Multi-level index structure
— Great for little to large
— Asymmetric tree with fixed sized blocks

 Metadata associated with the file
— Rather than in the directory that points to it

* Locality Heuristics
— Block group placement
— Reserve space

e Scalable directory structure
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|II

An “almost rea

file system

* Pintos: src/filesys/file.c, inode.c

/* An open file. */
struct file

{ .
struct inode *inode; /* File's inode. */ Irect [)ata
off_t pos; /#* Current position. */ ycks Blocks
bool deny _write; /* Has file_deny_write() been called? */
b /’D
e numpQrr——— X } : : =
- /* In-memory inode. */
struct inode
{
struct list_elem elem; /* Element in inode list. */
block_sector_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny _write_cnt; /* B: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */
};
/* On-disk inode.
gg Must be exactly BLOCK_SECTOR_SIZE bytes long. */
TﬂFstEuct inode_disk
block_sector_t start; /* First data sector. */
off_t length; /* File size in bytes. =/
unsigned magic; /* Magic number. */
uint32_t unused[125]; /* Not used. */
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FFS: File Attributes

* Inode metadata

Inode Array Triple  Double
Indirect Indirect Indirect Data
de— Blocks Blocks Blocks Blocks

File”
Metadata /D
User

Group t \D

9 basic access control bits ['s
- UGO x RWX

[]
Setuid bit a

- execute at owner permissions |, [ ]

- rather than user it o] D\%
Getgid bit —D\;—\D

- execute at group’s permissions

— 05
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FFS: Data Storage

* Small files: 12 pointers direct to data blocks

Direct pointers Triple  Double

Indirect Indirect Indirect Data

With 4kB blocks, sufficient Inode  Blocks Blocks  Blocks Blocks

For files up to 48KB

File”

Jetadata /D

Direct /D/I:l

Pointers 12000 T T T T T
! : 2000 ——
: : : : : 2001 -
: . e s : 2002 - i
10000 ' Fr 2003 -
€ 2004 ----
L] & 8000 [ i
"N -3 IR R R A
Indirect Pointer 12 000 f
Dbl. Indirect Ptr. 8
Tripl. Indrect Ptr: 8 4000 |
c
0 i-f-"-‘-‘""{:;/ 1 | I ‘l\\\’\‘:‘ Tl
0 8 128 2K 32K 512K 8M 128M
File size (bytes, log scale, power-of-2 bins)
10/ 24/ 14 cs162 fald Fig. 2. Histograms of files by size.




FFS: Data Storage

e Large files: 1,2,3 level indirect pointers

Indirect pointers
- point to a disk block
containing only pointers
- eg. 4 kB blocks => 1024 pointers
=>4 MB @ level 2
=>4 GB @ level 3

Triple  Double
Indirect Indirect Indirect Data
/ Inode  Blocks Blocks Blocks Blocks

ata

Used space per file system (MB)

[]

=>4 TB @ level 4 /D 48 KB
) +4 MB
. Direqt \
\ Tointels
A Five-Year Study of File-System Metadata . 9:9
1800 : ‘ ‘ .
1400 | 2003 |

, \ 2004 - N
1200 - 5 1 t Pointer I:I
1000 fod , lirect Ptr. d - N N N
500 //,’ : N ‘b \“ //'\\ jreCt Pt A u\%\%
200 \/\»ﬁi‘::;‘, S I:I +4 TB
0

512 4K 32K 256K 2M 16M  128M  1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size. csl62 fald L24 14



Freespace Manhagement

e Bit vector with a bit per storage block

e Stored at a fixed location within the file
system
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Where are inodes stored?

* In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

— Header not stored anywhere near the data
blocks. To read a small file, seek to get
header, seek back to data.

— Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes
were created (They were each given a unique
number, called an “inumber”™)
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Where are inodes stored?

 Later versions of UNIX moved the header
iInformation to be closer to the data blocks

— Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an 1s of that directory
run fast).

— Pros:

« UNIX BSD 4.2 puts a portion of the file header array on each of
many cylinders. For small directories, can fit all data, file
headers, etc. in same cylinder = no seeks!

 File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

 Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)

— Part of the Fast File System (FFS)

» General optimization to avoid seeks
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Locality: Block Groups

Block Group 0

* File system volume is divided
into a set of block groups

— Close set of tracks
* File data blocks, metadata, and

free space are interleaved
within block group

— Avoid huge seeks between user
data and system structure

 Putdirectory and its files in
common block group

* First-Free allocation of new file
block

— Few little holes at start, big
sequential runs at end of group

— Avoids fragmentation
— Sequential layout for big

Reserve space in the BG

Block Group 1

Block Group 2
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FFS First Fit Block Allocation

In-Use Free
Start of Block Block

Block EEEEN
Group

Write Two Block File

Start of
Block di-]

Group
Start of Write Largs File

Block e
Group

Space at end

10/24/14 cs162 fal4d L24 19



FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

e Cons

— Inefficient for tiny files (a 1 byte file requires both
an inode and a data block)

— Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation
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Bit more on directories

e Stored in files, can be read, but don’t
— System calls to access directories

Jusr
— Open / Creat traverse the structure
— mkdir /rmdir add/remove entries
— |_|nk/ Unlink S usr/lib Jusr/lib4.3
* Link existing file to a directory
— Not in FAT ! N

* Forms a DAG a

* libc support fust/libffoo
— DIR * opendir (const char *dirname)

— struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent

**result)
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When can a file be deleted ?

* Maintain reference count of links to the file.
* Delete after the last reference is gone.

Jusr

/usr/lib Jusr/lib4.3

Jusr/lib/foo

Jusr/lib4.3/foo
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Links

e Hard link

— Sets another directory entry to contain the file
number for the file

— Creates another name (path) for the file
— Each is “first class”
e Soft link or Symbolic Link

— Directory entry contains the name of the file
— Map one name to another name
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Large Directories: B-Trees

Search for hash("out2”) = 0x0000c194
............... B+Tree Root
Before |[00ad1102 |b0bf8201 cff1a412
Child Pointer L .- ;
; B+Tree Node B+Tree Node B+Tree Node
Before OOODC1 95 (00018201
Child Pointer | :
B+ Tree L&af ... B+Tree Leaf B+Tree Leaf
Hash [|0000a0d1|0000b971 0000c194
Entry Pointer - P B
.- o '"''''"'"','!":;:}':--f-:—-mr'-f-vr-,-'-:‘rf.'.'.’.-..-.:-..=__-_:,_’_,:,_;_______________Mmm“m_m___t o
Name . .. file1 file2 file9841 outl out2 out16341
File Number [36210429| 983211 239341 | 231121 243212 | 841013 | 841014 . 324114
“out2”is file 841014
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NTFS

* Master File Table
— Flexible 1KB storage for metadata and data
— Variable-sized attribute records (data or metadata)
— Extend with variable depth tree (non-resident)

e Extents —variable length contiguous regions
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)
— File create can provide hint as to size of file

* Journalling for reliability
— Discussed next week
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NTFS Small File

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

MFT Record (small file)

Std. Info. | File Name Data (resident) (free)

Attribute list
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NTFS Medium File

Start
Master File Table Length

r\-_ %
X
©
©
a)

MET Record Start + Lengthl_,

" | Std.Info. | FleName | Data (nonresident) | (free)
Start .
!
Length L

T &
]
X
©
©
a)

Start + Lengthl_,
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NTFS Multiple Indirect Blocks

MFT Record
— _.(big/fra mented file)
..... Std. Info. | At List Data (nonresident)
"""" ! — =

......

Data (nonresident) '
ol

) | - -

:. ..... Data (nonresident)

— - —
:; ....... Data (nonresident)
— ) o —
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Master File Table
] MFT Record
(huge/badly-fragmented file)

Std. Info. Attr. List (nonresident)
| |

I .oe '
2@\ Extent with part of attribute list
Data (nonresident)

|

-

Data (nonresident)

[

— —

Data (nonresident)

]
«=« | Extent with part of attribute list
B ) Data (nonresident)
- |
— —

Data (nonresident)

| —

.=« | Extent with part of attribute list

Data (nonresident)

Data (nonresident)

l l ]
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In-Memory File System Structures &

directory structure

open (file name)

directory structure file-control block

user space kernel memory secondary storage

* Open system call:
— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table
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In-Memory File System Structures &

index
N el
/
/ data blocks
—

read (index) T ——

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

» Read/write system calls:

— Use file handle to locate inode
— Perform appropriate reads or writes
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Quizzie: File Systems

« Q1:True _ False _ A hard-link is a pointer to other file
« Q2: True _ False _ inumber is the id of a block

« Q3: True _ False _ Typically, directories are stored as
files

« Q4:True _ False _ Storing file headers on the
outermost cylinders minimizes the seek time
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Quizzie: File Systems

10/24/14

Q1: True _ False X A hard-link is a pointer to other file
Q2: True _ False X inumber is the id of a block

Q3: True X False _ Typically, directories are stored as
files

Q4: True _ False X Storing file headers on the
outermost cylinders minimizes the seek time
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File System Summary (1/2)

* File System:
— Transforms blocks into Files and Directories
— Optimize for access and usage patterns

— Maximize sequential access, allow efficient
random access

 File (and directory) defined by header, called
“Inode”

* Multilevel Indexed Scheme
— Inode contains file info, direct pointers to blocks,
— indirect blocks, doubly indirect, etc..
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File System Summary (2/2)

o 4.2 BSD Multilevel index files

— Inode contains pointers to actual blocks, indirect
blocks, double indirect blocks, etc.

— Optimizations for sequential access: start new
files in open ranges of free blocks, rotational
Optimization

* Naming: act of translating from user-visible

names to actual system resources
— Directories used for naming for local file systems
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