File System Design

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 24
October 24, 2014

Reading: A&D 13.3
HW 4 due 10/27
Proj 2 final 11/07

Recall: Components of a File System

File path

File number

Data blocks

10/24/14 cs162 fal4d L24 2

Recall: FAT (File Allocation Table)

* File is collection of disk blocks

* FAT s linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of root of ool I G
block list for the file file number ’*‘._
' ' —» 31; :I File 31, Block 0
* Grow file by allocating free blocks AT Sl

and linking them in File 17, Block 1

A

 Example Create file, write, write

File 2 number

] File 31, Block 3
free J File 57, Block O
o File 31, Block 2
N-1: N-1:
mem

10/24/14 cs162 fald L24

FAT Assessment

* Time to find block ?? 5 5 5 02
* Free list usually just a bit vector FAT Disk Blocks
. . O: O:
e Next fit algorithm o
ree [:::::::
* Block layout for file ??? —> 3L 7 File 31, Block 0
file number e File 31, Block 1
e Sequential Access ??7? : File 17 , Block 1
e Random Access ??? T
* Fragmentation ??? — File 31, Block 3
. _ — i File 17, Block 0
 Small files ??7? file 2 number {7
° B|g ﬁles ??? . - File 31, Block 2
N-1: N-1:

10/24/14 cs162 fald L24 4

What about the Directory?

end

f
“/home/tom” fcl)le

Name | Music Work
File Number 5268830 88026158 35002320 85200219

file 5268830

| footxt | F
66212871 Space

~_

Free
Space

Next |

e Essentially a file containing
<file_name: file_number> mappings

* Free space for new entries

* |n FAT: attributes kept in directory (!!!)
* Each directory a linked list of entries
 Where do you find root directory (“/”)

10/24/14 cs162 fald L24 5

Directory Structure (Con’t)

- How many disk accesses to resolve “/my/book/
count’ ?
— Read in file header for root (fixed spot on disk)

— Read in first data block for root

« Table of file name/index pairs. Search linearly — ok since
directories typically very small

— Read in file header for “my”
— Read in first data block for “my”; search for “book”
— Read in file header for “book”
— Read in first data block for “book”; search for “count”
— Read in file header for “count”
« Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute
path (say CWD="/my/book” can resolve “count”)

10/24/14 cs162 fald L24 6

Big FAT security holes

* FAT has no access rights
 FAT has no header in the file blocks

e Just gives and index into the FAT
— (file number = block number)

10/24/14 cs162 fald L24 7

Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL

o M O St ﬁ I e S a r e S m a I | ;J:(;versity of Wisconsin, Madison

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

* Most of the space is occupied by the rare big
ones

A Five-Year Study of File-System Metadata ~ ° 9:9

12000

Files per file system

1800 T T T T T T T T
; 2000 ——
1600 - 2 2001 - _
10000 1 g " /A] 2002 oo
= L / 4 i ...2003
‘E’ 1400 / e] 2004 _______
8000 1 2 1200 F 1
5‘ / '\\
o 1000 i g ¢ -
6000 4 & / - /
g 800 o iy
8 o y /I § ™
4000 1 8 600 3 = \\\
» A\,
B A00 [R T e
2000 18 AR Y
1 L s s g
0 " = 0 oy ol | i 1 l ;;;L‘- IR
0 8 128 2K 32K 512K 8M 128 512 4K 32K 256K 2M i6M 128M 1G 8G 64G
File size (bytes, log scale, power-of-2 bins) Containing file size (bytes, log scale, power-of-2 bins)
Fig. 2. Histograms of files by size. Fig. 4. Histograms of bytes by containing file size.

10/24/14 cs162 fald L24 8

III

So what about a “real” file system

e Meet the inode

Inode Array Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

_ File
file_number Metadata /‘9

—l \ Direct T
Pointers D

Indirect \Po'lnter /D\B—D
Dbl. Indirect Ptr. g1 . ‘D
Tripl. Indrect Ptr: —’D\D\—':%\D

10/24/14 cs162 fald L24 9

Unix Fast File System

* File Number is index into inode arrays

 Multi-level index structure
— Great for little to large
— Asymmetric tree with fixed sized blocks

 Metadata associated with the file
— Rather than in the directory that points to it

* Locality Heuristics
— Block group placement
— Reserve space

e Scalable directory structure

10/24/14 cs162 fald L24 10

|II

An “almost rea

file system

* Pintos: src/filesys/file.c, inode.c

/* An open file. */
struct file

{ .
struct inode *inode; /* File's inode. */ Irect [)ata
off_t pos; /#* Current position. */ ycks Blocks
bool deny _write; /* Has file_deny_write() been called? */
b /’D
e numpQrr——— X } : : =
- /* In-memory inode. */
struct inode
{
struct list_elem elem; /* Element in inode list. */
block_sector_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny _write_cnt; /* B: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */
};
/* On-disk inode.
gg Must be exactly BLOCK_SECTOR_SIZE bytes long. */
TﬂFstEuct inode_disk
block_sector_t start; /* First data sector. */
off_t length; /* File size in bytes. =/
unsigned magic; /* Magic number. */
uint32_t unused[125]; /* Not used. */
10/24/14 ki

FFS: File Attributes

* Inode metadata

Inode Array Triple Double
Indirect Indirect Indirect Data
de— Blocks Blocks Blocks Blocks

File”
Metadata /D
User

Group t \D

9 basic access control bits ['s
- UGO x RWX

[]
Setuid bit a

- execute at owner permissions |, []

- rather than user it o] D\%
Getgid bit —D\;—\D

- execute at group’s permissions

— 05

10/24/14 cs162 fald L24 12

FFS: Data Storage

* Small files: 12 pointers direct to data blocks

Direct pointers Triple Double

Indirect Indirect Indirect Data

With 4kB blocks, sufficient Inode Blocks Blocks Blocks Blocks

For files up to 48KB

File”

Jetadata /D

Direct /D/I:l

Pointers 12000 T T T T T
! : 2000 ——
: : : : : 2001 -
: . e s : 2002 - i
10000 ' Fr 2003 -
€ 2004 ----
L] & 8000 [i
"N -3 IR R R A
Indirect Pointer 12 000 f
Dbl. Indirect Ptr. 8
Tripl. Indrect Ptr: 8 4000 |
c
0 i-f-"-‘-‘""{:;/ 1 | I ‘l\\\’\‘:‘ Tl
0 8 128 2K 32K 512K 8M 128M
File size (bytes, log scale, power-of-2 bins)
10/ 24/ 14 cs162 fald Fig. 2. Histograms of files by size.

FFS: Data Storage

e Large files: 1,2,3 level indirect pointers

Indirect pointers
- point to a disk block
containing only pointers
- eg. 4 kB blocks => 1024 pointers
=>4 MB @ level 2
=>4 GB @ level 3

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

ata

Used space per file system (MB)

[]

=>4 TB @ level 4 /D 48 KB
) +4 MB
. Direqt \
\ Tointels
A Five-Year Study of File-System Metadata . 9:9
1800 : ‘ ‘ .
1400 | 2003 |

, \ 2004 - N
1200 - 5 1 t Pointer I:I
1000 fod , lirect Ptr. d - N N N
500 //,’ : N ‘b \“ //'\\ jreCt Pt A u\%\%
200 \/\»ﬁi‘::;‘, S I:I +4 TB
0

512 4K 32K 256K 2M 16M 128M 1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size. csl62 fald L24 14

Freespace Manhagement

e Bit vector with a bit per storage block

e Stored at a fixed location within the file
system

10/24/14 cs162 fald L24 15

Where are inodes stored?

* In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

— Header not stored anywhere near the data
blocks. To read a small file, seek to get
header, seek back to data.

— Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes
were created (They were each given a unique
number, called an “inumber”™)

10/24/14 cs162 fald L24 16

Where are inodes stored?

 Later versions of UNIX moved the header
iInformation to be closer to the data blocks

— Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an 1s of that directory
run fast).

— Pros:

« UNIX BSD 4.2 puts a portion of the file header array on each of
many cylinders. For small directories, can fit all data, file
headers, etc. in same cylinder = no seeks!

 File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

 Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)

— Part of the Fast File System (FFS)

» General optimization to avoid seeks

10/24/14 cs162 fald L24 17

Locality: Block Groups

Block Group 0

* File system volume is divided
into a set of block groups

— Close set of tracks
* File data blocks, metadata, and

free space are interleaved
within block group

— Avoid huge seeks between user
data and system structure

 Putdirectory and its files in
common block group

* First-Free allocation of new file
block

— Few little holes at start, big
sequential runs at end of group

— Avoids fragmentation
— Sequential layout for big

Reserve space in the BG

Block Group 1

Block Group 2

10/24/14 cs162 fald L24 18

FFS First Fit Block Allocation

In-Use Free
Start of Block Block

Block EEEEN
Group

Write Two Block File

Start of
Block di-]

Group
Start of Write Largs File

Block e
Group

Space at end

10/24/14 cs162 fal4d L24 19

FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

e Cons

— Inefficient for tiny files (a 1 byte file requires both
an inode and a data block)

— Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

10/24/14 cs162 fald L24 20

Bit more on directories

e Stored in files, can be read, but don’t
— System calls to access directories

Jusr
— Open / Creat traverse the structure
— mkdir /rmdir add/remove entries
— |_|nk/ Unlink S usr/lib Jusr/lib4.3
* Link existing file to a directory
— Not in FAT ! N

* Forms a DAG a

* libc support fust/libffoo
— DIR * opendir (const char *dirname)

— struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent

**result)
10/24/14 cs162 fald L.24 21

Jusr/lib4.3/foo

When can a file be deleted ?

* Maintain reference count of links to the file.
* Delete after the last reference is gone.

Jusr

/usr/lib Jusr/lib4.3

Jusr/lib/foo

Jusr/lib4.3/foo

10/24/14 cs162 fald L24 22

Links

e Hard link

— Sets another directory entry to contain the file
number for the file

— Creates another name (path) for the file
— Each is “first class”
e Soft link or Symbolic Link

— Directory entry contains the name of the file
— Map one name to another name

10/24/14 cs162 fald L24 23

Large Directories: B-Trees

Search for hash("out2”) = 0x0000c194
............... B+Tree Root
Before |[00ad1102 |b0bf8201 cff1a412
Child Pointer L .- ;
; B+Tree Node B+Tree Node B+Tree Node
Before OOODC1 95 (00018201
Child Pointer | :
B+ Tree L&af ... B+Tree Leaf B+Tree Leaf
Hash [|0000a0d1|0000b971 0000c194
Entry Pointer - P B
.- o '"''''"'"','!":;:}':--f-:—-mr'-f-vr-,-'-:‘rf.'.'.’.-..-.:-..=__-_:,_’_,:,_;_______________Mmm“m_m___t o
Name . .. file1 file2 file9841 outl out2 out16341
File Number [36210429| 983211 239341 | 231121 243212 | 841013 | 841014 . 324114
“out2”is file 841014
10/24/14 cs162 fald L24 24

NTFS

* Master File Table
— Flexible 1KB storage for metadata and data
— Variable-sized attribute records (data or metadata)
— Extend with variable depth tree (non-resident)

e Extents —variable length contiguous regions
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)
— File create can provide hint as to size of file

* Journalling for reliability
— Discussed next week

10/24/14 cs162 fald L24 25

NTFS Small File

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

MFT Record (small file)

Std. Info. | File Name Data (resident) (free)

Attribute list

10/24/14 cs162 fald L24 26

NTFS Medium File

Start
Master File Table Length

r\-_ %
X
©
©
a)

MET Record Start + Lengthl_,

" | Std.Info. | FleName | Data (nonresident) | (free)
Start .
!
Length L

T &
]
X
©
©
a)

Start + Lengthl_,

10/24/14 cs162 fald L24 27

NTFS Multiple Indirect Blocks

MFT Record
— _.(big/fra mented file)
..... Std. Info. | At List Data (nonresident)
"""" ! — =

......

Data (nonresident) '
ol

) | - -

:. Data (nonresident)

— - —
:; Data (nonresident)
—) o —

10/24/14 w 28

Master File Table
] MFT Record
(huge/badly-fragmented file)

Std. Info. Attr. List (nonresident)
| |

I .oe '
2@\ Extent with part of attribute list
Data (nonresident)

|

-

Data (nonresident)

[

— —

Data (nonresident)

]
«=« | Extent with part of attribute list
B) Data (nonresident)
- |
— —

Data (nonresident)

| —

.=« | Extent with part of attribute list

Data (nonresident)

Data (nonresident)

l l]
10/24/14 cs162 fald L24 29

In-Memory File System Structures &

directory structure

open (file name)

directory structure file-control block

user space kernel memory secondary storage

* Open system call:
— Resolves file name, finds file control block (inode)
— Makes entries in per-process and system-wide tables
— Returns index (called “file handle”) in open-file table

10/24/14 cs162 fald L24 30

RSITYy
s E==NAON
Q

In-Memory File System Structures &

index
N el
/
/ data blocks
—

read (index) T ——

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

» Read/write system calls:

— Use file handle to locate inode
— Perform appropriate reads or writes

10/24/14 cs162 fald L24 31

Quizzie: File Systems

« Q1:True _ False _ A hard-link is a pointer to other file
« Q2: True _ False _ inumber is the id of a block

« Q3: True _ False _ Typically, directories are stored as
files

« Q4:True _ False _ Storing file headers on the
outermost cylinders minimizes the seek time

10/24/14 cs162 fald L24 32

Quizzie: File Systems

10/24/14

Q1: True _ False X A hard-link is a pointer to other file
Q2: True _ False X inumber is the id of a block

Q3: True X False _ Typically, directories are stored as
files

Q4: True _ False X Storing file headers on the
outermost cylinders minimizes the seek time

cs162 fald L24 33

File System Summary (1/2)

* File System:
— Transforms blocks into Files and Directories
— Optimize for access and usage patterns

— Maximize sequential access, allow efficient
random access

 File (and directory) defined by header, called
“Inode”

* Multilevel Indexed Scheme
— Inode contains file info, direct pointers to blocks,
— indirect blocks, doubly indirect, etc..

10/24/14 cs162 fald L24 34

File System Summary (2/2)

o 4.2 BSD Multilevel index files

— Inode contains pointers to actual blocks, indirect
blocks, double indirect blocks, etc.

— Optimizations for sequential access: start new
files in open ranges of free blocks, rotational
Optimization

* Naming: act of translating from user-visible

names to actual system resources
— Directories used for naming for local file systems

10/24/14 cs162 fald L24 35

