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Big hairy thought-provoking question to
help review recent topics
* The One vs The All

* |simproving response time (the One) in
alignment or in opposition to improving
throughput (the All) ?

e E.g., C-SCAN ?
* Delay servicing queue?
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Performance: multiple outstanding requests:

10/17/14

Queue . Server

Suppose each read takes 10 ms to service.

If a process works for 100 ms after each read,
what is the utilization of the disk?

—U=10ms/110ms =9%
What it there are two such processes?
—U=(10ms+10ms)/110ms = 18%

What if each of those processes have two
such threads?
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How else do we hide I/O latency?

 Blocking Interface: “Wait”

— When request data (e.g., read () system call), put
process to sleep until data is ready

— When write data (e.g., write () system call), put process
to sleep until device is ready for data

« Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of
bytes successfully transferred to kernel

— Read may return nothing, write may write nothing

« Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
iImmediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user



/O & Storage Layers

Operations, Entities and Interface

Application / Service

streams
High Level I/O
Low Level I/O handles
Syscall registers
file_open, file_read, ... on struct file * & void *
File System feseriptors— we are here ...
/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA
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So you are going to design a file system ... &

 What factors are critical to the design
choices?
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Recall: C Low level I/O

* Operations on File Descriptors — as OS object
representing the state of a file

— User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, |int flags [, /mode t mode|])
int creat (const char *fi ame, mode t mode)
int close (int filed

Bit vector of:

* Access modes (Rd, Wr, ...)

* Open Flags (Create, ...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
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Recall: C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)

- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)

int fsync (int fildes) — wait for i/o to finish
void sync (void) — wait for ALL to finish

 When write returns, data is on its way to disk
and can be read, but it may not actually be
permanent!
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So you are going to design a file system ... %

 What factors are critical to the design choices?
* Durable data store => it’s all on disk
e Disks Performance !!!

— Maximize sequential access, minimize seeks

* Open before Read/Write

— Can perform protection checks and look up where the actual file
resource are, in advance

* Sizeis determined as they are used !!!
— Can write (or read zeros) to expand the file
— Start small and grow, need to make room

* Organized into directories
— What data structure (on disk) for that?

* Need to allocate / free blocks
— Such that access remains efficient
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Components of a File System

File path

File number

Data blocks
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Components of a file system

jile name file number : Storage block
offset directory offset index structure

* Open performs name resolution

— Translates pathname into a “file number”
* Used as an “index” to locate the blocks

— Creates a file descriptor in PCB within kernel
— Returns a “handle” (another int) to user process

* Read, Write, Seek, and Sync operate on handle
— Mapped to descriptor and to blocks
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Directories
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Directory

* Basically a hierarchical structure
* Each directory entry is a collection of
— Files

— Directories

* Alink to another entries

e Each has a name and attributes
— Files have data

* Links (hard links) make it a DAG, not just a tree

— Softlinks (aliases) are another name for an entry
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/O & Storage Layers

Application / Service

streams
High Level I/O
Low Level I/O handles #4 - handle
Syscall registers
File System descriptors .|
/O Driver Commands and Data Transfers Data blocks
—

Disks, Flash, Controllers, DMA

*

Directory Structure
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File

block
 Named permanent storage pata plocs

e Contains

— Data
* Blocks on disk somewhere

— Metadata (Attributes)
* Owner, size, last opened, ...

File handle

File descriptor

Fileobject (inode)
* Access rights Position

— R, W, X
— Owner, Group, Other (in Unix systems)
— Access control list in Windows system
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FAT (File Allocation Table)

 Assume (for now) we have a
way to translate a path to a “file
V4
number file number

— i.e., a directory structure

* Disk Storage is a collection of
Blocks

— Just hold file data
 Example: file_read 31,<2, x>
* Indexinto FAT with file number
* Follow linked list to block

 Read the block from disk into
mem

31:

N-1:
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FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2




FAT (File Allocation Table)

* File is collection of disk blocks

* FAT is linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of rootof % | ©
block list for the file  file number [
' —> 31: :| File 31, Block O
* File offset (0o = B:x) s File 31, Block 1

* Follow list to get block # Hi
 Unused blocks <> FAT free list

/r'_:l File 31, Block 3
free HHpH

b File 31, Block 2

N-1: N-1:

mem
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FAT (File Allocation Table)

* File is collection of disk blocks

e FAT is linked list 1-1 with blocks

 File Number is index of root of
block list for the file file nu

* File offset (o =B:x)
* Follow list to get block #
 Unused blocks <> FAT free list

mber

- 31:

 Example: file_write(51, <3, y>)

free

mem

N-1:
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Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

N-1:




FAT (File Allocation Table)

* File is collection of disk blocks

e FAT is linked list 1-1 with blocks

 File Number is index of root of
block list for the file file nu

* File offset (o =B:x)
* Follow list to get block #
 Unused blocks <> FAT free list

* Grow file by allocating free blocks

and linking them in

mem

FAT
0: O:
mber |
—> 31: '_:|
@
Bs
!
free ——);J
® <=
N-1: N-1:
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File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2




FAT (File Allocation Table)

* File is collection of disk blocks

* FAT s linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of root of ool I G
block list for the file file number ’*‘,_
' ' —» 31; :I File 31, Block 0
* Grow file by allocating free blocks e

and linking them in File 17, Block 1

A

 Example Create file, write, write

File 2 number

] File 31, Block 3
free J File 17, Block 0
o File 31, Block 2
N-1: N-1:
mem

10/17/14 cs162 fald L21



FAT Assessment

Used in DOS, Windows, thumb drives, ...

Where is FAT stored ? FAT Disk Blocks
On Disk, restore on boot, copy in memory o
free (s
. ? .....
What happens when you format a disk: > 31 e 31 Block
Zero the blocks, link up the FAT free file number . File 31, Block 1
Slmple < File 17, Block 1
| m File 31, Block 3
, — N File 17, Block 0
file 2 number
| o File 31, Block 2
N-1: N-1:
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FAT Assessment

 Time to find block (large files) ?? =77 7=
* Free list usually just a bit vector FAT Disk Blocks
* Next fit algorithm o: 0:
* Block layout for file ??? free b
> 371: File 31, Block O
* Sequential Access ??? file number - File 31 Block 1

* Random Access ??? « Al L7, Blodicd

* Fragmentation ???

 Small files ??? File 31, Block 3
° B|g ﬁles ??? fle 2 number — File 17, Block O
e File 31, Block 2

N-1: N-1:
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What about the Directory?

end

f
“/home/tom” fcl)le

Name | Music Work
File Number 5268830 88026158 35002320 85200219

file 5268830

| footxt | F
66212871 Space

~_

Free
Space

Next |

e Essentially a file containing
<file_name: file_number> mappings

* Free space for new entries

* |n FAT: attributes kept in directory (!!!)
* Each directory a linked list of entries
 Where do you find root directory ( “/” )
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Bit more on directories

e Stored in files, can be read, but don’t
— System calls to access directories

Jusr
— Open / Creat traverse the structure
— mkdir /rmdir add/remove entries
— |_|nk/ Unlink S usr/lib Jusr/lib4.3
* Link existing file to a directory
— Not in FAT ! N

* Forms a DAG a

* libc support fust/libffoo
— DIR * opendir (const char *dirname)

— struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent

**result)
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When can a file be deleted ?

* Maintain reference count of links to the file.
* Delete after the last reference is gone.

Jusr

/usr/lib Jusr/lib4.3

Jusr/lib/foo

Jusr/lib4.3/foo
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Big FAT security holes

* FAT has no access rights
 FAT has no header in the file blocks

e Just gives and index into the FAT
— (file number = block number)
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Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL

o M O St ﬁ I e S a r e S m a I | ;J:(;versity of Wisconsin, Madison

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

* Most of the space is occupied by the rare big
ones

A Five-Year Study of File-System Metadata ~ ° 9:9
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III

So what about a “real” file system

e Meet the inode

Inode Array Triple  Double
Indirect Indirect Indirect Data
/ Inode  Blocks Blocks Blocks Blocks

File”
Metadata /D

Direct \D

Pointers

Indirect i’o[nter /D\D—D
Dbl. Indirect Ptr. g1 . ‘D
Tripl. Indrect Ptr: —’D\D\—':%\D
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