File System Design

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 23
October 22, 2014

Reading: A&D 13.1-3a
HW 4 out
Proj 2 out

Big hairy thought-provoking question to
help review recent topics
* The One vs The All

* |simproving response time (the One) in
alignment or in opposition to improving
throughput (the All) ?

e E.g., C-SCAN ?
* Delay servicing queue?

10/17/14 cs162 fald L21 2

Performance: multiple outstanding requests:

10/17/14

Queue . Server

Suppose each read takes 10 ms to service.

If a process works for 100 ms after each read,
what is the utilization of the disk?

—U=10ms/110ms =9%
What it there are two such processes?
—U=(10ms+10ms)/110ms = 18%

What if each of those processes have two
such threads?

cs162 fal4 L21 3

How else do we hide I/O latency?

 Blocking Interface: “Wait”

— When request data (e.g., read () system call), put
process to sleep until data is ready

— When write data (e.g., write () system call), put process
to sleep until device is ready for data

« Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of
bytes successfully transferred to kernel

— Read may return nothing, write may write nothing

« Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
iImmediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

/O & Storage Layers

Operations, Entities and Interface

Application / Service

streams
High Level I/O
Low Level I/O handles
Syscall registers
file_open, file_read, ... on struct file * & void *
File System feseriptors— we are here ...
/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

10/17/14 cs162 fal4 L21 5

So you are going to design a file system ... &

 What factors are critical to the design
choices?

10/17/14 cs162 fald L21 6

Recall: C Low level I/O

* Operations on File Descriptors — as OS object
representing the state of a file

— User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, |int flags [, /mode t mode|])
int creat (const char *fi ame, mode t mode)
int close (int filed

Bit vector of:

* Access modes (Rd, Wr, ...)

* Open Flags (Create, ...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
9/5/14 cs162 fald L3 7

Recall: C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)

- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)

int fsync (int fildes) — wait for i/o to finish
void sync (void) — wait for ALL to finish

 When write returns, data is on its way to disk
and can be read, but it may not actually be
permanent!

9/5/14 cs162 fal4 L3

So you are going to design a file system ... %

 What factors are critical to the design choices?
* Durable data store => it’s all on disk
e Disks Performance !!!

— Maximize sequential access, minimize seeks

* Open before Read/Write

— Can perform protection checks and look up where the actual file
resource are, in advance

* Sizeis determined as they are used !!!
— Can write (or read zeros) to expand the file
— Start small and grow, need to make room

* Organized into directories
— What data structure (on disk) for that?

* Need to allocate / free blocks
— Such that access remains efficient

10/17/14 cs162 fald L21 9

Components of a File System

File path

File number

Data blocks

10/17/14 cs162 fal4 L21 10

Components of a file system

jile name file number : Storage block
offset directory offset index structure

* Open performs name resolution

— Translates pathname into a “file number”
* Used as an “index” to locate the blocks

— Creates a file descriptor in PCB within kernel
— Returns a “handle” (another int) to user process

* Read, Write, Seek, and Sync operate on handle
— Mapped to descriptor and to blocks

10/17/14 cs162 fald L21 11

Directories

FAVORITES

= All My Files
@ AirDrop

#\; Applications
[0 Desktop

@ Documents
© Downloads

DEVICES

] David’s M...
Remote Disc
TAGS

© Red

© Orange

Yellow

) Green
© Blue
© Purple
O Gray
) All Tags...

10/17/14

Name

> [bse
v [Classes
1 AIT2008
[CS-Scholars
[cs61cl-fo8
{1 cs61cl-f09
[cs162
» (] AndersonDahlin

v [fal4

7 162prereqcheckSept8.xlsx
™ coursecomparison.xIsx

>

4vVYVYyYy

4 vVYVYYyYy

4

> B

=]
=
]
=]

T €S 162 apps.xlsx

csl62git
devel
exams
gitprojects

v (] group0

e lE] [elE"

il

v [pintos

> @3 src
gradesheet.xls
GSI Section Coverage.xlsx
Lectures
pintos-notes.txt
pintos.pdf
roster-9-13.xls
roster-9-19.xls
staff.xlsx
student
studentsExcelFile-10-20

77 syllabus—fa14.xIsx

=~

tmp

pintos
> [spld
> [cs194
> [cs262b

cs162 fal4 L21

Date Modified
Yesterday, 6:21 PM

Oct 13, 2014, 10:19 PM
Oct 13, 2014, 10:11 PM
Oct 13, 2014, 10:11 PM
Oct 13, 2014, 10:17 PM
Oct 13, 2014, 10:19 PM
Today, 8:36 AM

Oct 13, 2014, 10:11 PM
Today, 8:36 AM

Sep 10, 2014, 3:20 PM
Aug 6, 2014, 7:50 AM
Jun 29, 2014, 6:35 AM
Sep 23, 2014, 11:33 AM
Oct 15, 2014, 11:40 AM
Oct 13, 2014, 10:12 PM
Oct 8, 2014, 4:52 PM
Today, 8:35 AM

Today, 8:35 AM

Today, 8:35 AM

Sep 19, 2014, 4:48 PM
Aug 22, 2014, 1:29 PM
Today, 8:22 AM

Sep 14, 2014, 2:10 PM
Jul 21, 2014, 10:17 AM
Sep 13, 2014, 5:12 PM
Sep 19, 2014, 4:39 PM
Aug 6, 2014, 7:14 AM
Oct 13, 2014, 10:12 PM
Yesterday, 9:53 AM

Sep 12, 2014, 10:00 AM
Oct 13, 2014, 10:12 PM
Aug 8, 2014, 6:06 AM
May 14, 2014, 9:02 PM
Oct 13, 2014, 10:16 PM
Aug 7, 2013, 7:55 AM

Kind

Folder
Folder
Folder
Folder
Folder
Folder
Folder
Folder
Folder

Micros...
Micros...
Micros...

Folder
Folder
Folder
Folder
Folder
Folder
Folder

Micros...
Micros...

Folder

kbook
kbook
kbook

kbook
kbook

Plain Text
PDF Document

Micros...
Micros...
Micros...

Folder

Micros...
Micros...

Folder
Folder
Folder
Folder
Folder

kbook
kbook
kbook

kbook
kbook

12

Directory

* Basically a hierarchical structure
* Each directory entry is a collection of
— Files

— Directories

* Alink to another entries

e Each has a name and attributes
— Files have data

* Links (hard links) make it a DAG, not just a tree

— Softlinks (aliases) are another name for an entry

10/17/14 cs162 fald L21 13

/O & Storage Layers

Application / Service

streams
High Level I/O
Low Level I/O handles #4 - handle
Syscall registers
File System descriptors .|
/O Driver Commands and Data Transfers Data blocks
—

Disks, Flash, Controllers, DMA

*

Directory Structure

10/17/14 cs162 fal4 L21 14

File

block
 Named permanent storage pata plocs

e Contains

— Data
* Blocks on disk somewhere

— Metadata (Attributes)
* Owner, size, last opened, ...

File handle

File descriptor

Fileobject (inode)
* Access rights Position

— R, W, X
— Owner, Group, Other (in Unix systems)
— Access control list in Windows system

10/17/14 cs162 fald L21 15

FAT (File Allocation Table)

 Assume (for now) we have a
way to translate a path to a “file
V4
number file number

— i.e., a directory structure

* Disk Storage is a collection of
Blocks

— Just hold file data
 Example: file_read 31,<2, x>
* Indexinto FAT with file number
* Follow linked list to block

 Read the block from disk into
mem

31:

N-1:

10/17/14 mem cs162 fald L21

FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2

FAT (File Allocation Table)

* File is collection of disk blocks

* FAT is linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of rootof % | ©
block list for the file file number [
' —> 31: :| File 31, Block O
* File offset (0o = B:x) s File 31, Block 1

* Follow list to get block # Hi
 Unused blocks <> FAT free list

/r'_:l File 31, Block 3
free HHpH

b File 31, Block 2

N-1: N-1:

mem
10/17/14 cs162 fald L21

FAT (File Allocation Table)

* File is collection of disk blocks

e FAT is linked list 1-1 with blocks

 File Number is index of root of
block list for the file file nu

* File offset (o =B:x)
* Follow list to get block #
 Unused blocks <> FAT free list

mber

- 31:

 Example: file_write(51, <3, y>)

free

mem

N-1:

10/17/14 cs162 fald L21

FAT

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

N-1:

FAT (File Allocation Table)

* File is collection of disk blocks

e FAT is linked list 1-1 with blocks

 File Number is index of root of
block list for the file file nu

* File offset (o =B:x)
* Follow list to get block #
 Unused blocks <> FAT free list

* Grow file by allocating free blocks

and linking them in

mem

FAT
0: O:
mber |
—> 31: '_:|
@
Bs
!
free ——);J
® <=
N-1: N-1:

10/17/14 cs162 fald L21

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

FAT (File Allocation Table)

* File is collection of disk blocks

* FAT s linked list 1-1 with blocks FAT Disk Blocks
* File Number is index of root of ool I G
block list for the file file number ’*‘,_
' ' —» 31; :I File 31, Block 0
* Grow file by allocating free blocks e

and linking them in File 17, Block 1

A

 Example Create file, write, write

File 2 number

] File 31, Block 3
free J File 17, Block 0
o File 31, Block 2
N-1: N-1:
mem

10/17/14 cs162 fald L21

FAT Assessment

Used in DOS, Windows, thumb drives, ...

Where is FAT stored ? FAT Disk Blocks
On Disk, restore on boot, copy in memory o
free (s
. ?
What happens when you format a disk: > 31 e 31 Block
Zero the blocks, link up the FAT free file number . File 31, Block 1
Slmple < File 17, Block 1
| m File 31, Block 3
, — N File 17, Block 0
file 2 number
| o File 31, Block 2
N-1: N-1:

10/17/14 cs162 fal4d 121 21

FAT Assessment

 Time to find block (large files) ?? =77 7=
* Free list usually just a bit vector FAT Disk Blocks
* Next fit algorithm o: 0:
* Block layout for file ??? free b
> 371: File 31, Block O
* Sequential Access ??? file number - File 31 Block 1

* Random Access ??? « Al L7, Blodicd

* Fragmentation ???

 Small files ??? File 31, Block 3
° B|g ﬁles ??? fle 2 number — File 17, Block O
e File 31, Block 2

N-1: N-1:

10/17/14 cs162 fal4d 121 22

What about the Directory?

end

f
“/home/tom” fcl)le

Name | Music Work
File Number 5268830 88026158 35002320 85200219

file 5268830

| footxt | F
66212871 Space

~_

Free
Space

Next |

e Essentially a file containing
<file_name: file_number> mappings

* Free space for new entries

* |n FAT: attributes kept in directory (!!!)
* Each directory a linked list of entries
 Where do you find root directory (“/”)

10/17/14 cs162 fald L21 23

Bit more on directories

e Stored in files, can be read, but don’t
— System calls to access directories

Jusr
— Open / Creat traverse the structure
— mkdir /rmdir add/remove entries
— |_|nk/ Unlink S usr/lib Jusr/lib4.3
* Link existing file to a directory
— Not in FAT ! N

* Forms a DAG a

* libc support fust/libffoo
— DIR * opendir (const char *dirname)

— struct dirent * readdir (DIR *dirstream)

— int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent

**result)
10/17/14 cs162 fald L21 24

Jusr/lib4.3/foo

When can a file be deleted ?

* Maintain reference count of links to the file.
* Delete after the last reference is gone.

Jusr

/usr/lib Jusr/lib4.3

Jusr/lib/foo

Jusr/lib4.3/foo

10/17/14 cs162 fald L21 25

Big FAT security holes

* FAT has no access rights
 FAT has no header in the file blocks

e Just gives and index into the FAT
— (file number = block number)

10/17/14 cs162 fald L21 26

Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL

o M O St ﬁ I e S a r e S m a I | ;J:(;versity of Wisconsin, Madison

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

* Most of the space is occupied by the rare big
ones

A Five-Year Study of File-System Metadata ~ ° 9:9

12000

Files per file system

1800 T T T T T T T T
; 2000 ——
1600 - 2 2001 - _
10000 1 g " /A] 2002 oo
= L / 4 i ...2003
‘E’ 1400 / e] 2004 _______
8000 1 2 1200 F 1
5‘ / '\\
o 1000 i g ¢ -
6000 4 & / - /
g 800 o iy
8 o y /I § ™
4000 1 8 600 3 = \\\
» A\,
B A00 [R T e
2000 18 AR Y
1 L s s g
0 " = 0 oy ol | i 1 l ;;;L‘- IR
0 8 128 2K 32K 512K 8M 128 512 4K 32K 256K 2M i6M 128M 1G 8G 64G
File size (bytes, log scale, power-of-2 bins) Containing file size (bytes, log scale, power-of-2 bins)
Fig. 2. Histograms of files by size. Fig. 4. Histograms of bytes by containing file size.

10/17/14 cs162 fald L21 27

III

So what about a “real” file system

e Meet the inode

Inode Array Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

File”
Metadata /D

Direct \D

Pointers

Indirect i’o[nter /D\D—D
Dbl. Indirect Ptr. g1 . ‘D
Tripl. Indrect Ptr: —’D\D\—':%\D

10/17/14 cs162 fald L21 28

