|O Performance Oriented Drivers

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 22
October 20, 2014

Reading: A&D 7.5, 12.1c
HW 4 out
Proj 2 out

/0O Performance

300 | Besponse

g Time (ms)
User = I/O
Thread| % 200
Queue -
[OS Paths] 100

Response Time = Queue + I/O device service time

0 ho 100%
0%
« Performance of I/0 subsystem Throughput (Utilization)
— Metrics: Response Time, Throughput (% total BW)

— Effective BW per op = transfer size / response time
« Eff BW(N)=n/(S+n/B)=B/(1 +SB/n)
— Contributing factors to latency:

« Software paths (can be loosely modeled by a queue)
« Hardware controller

e 1/O device service time
« Queuing behavior:

— Can lead to big increases of latency as utilization increases
— Solutions?

A Simple Deterministic World

arrivals . Queue | Server departures

v
I\
_|
>
v

FTA >|< Ta

* Assume requests arrive at regular intervals, take a
fixed time to process, with plenty of time between ...

* Service rate (u=1/T) - operations per sec

* Arrival rate: (A= 1/T ,) - requests per second
o Utilization: U =A/u, where A<

 Average rate is the complete story

10/13/14 cs162 fal4 L19 3

A Ideal Linear World

= o Saturation
Q. o
L i
o]0] o]0]
-} >
o o
< <
— —
© ©
L L
g g
= = Empty Queue Unbounded
=) =)
0 1 0 1
Offered Load (T,/T.) Offered Load (T,/T.) -
> & -
© s
o W
()] >
> Q
() -
8, g
>
>
time time

* What does the queue wait time look like?
— Grows unbounded at a rate ~ (T./T,) till request rate subsides

10/13/14 cs162 fal4 L19

4

A Bursty World

arrivals =—»

Queue

—1a—

Arrivals

[<

Q depth

Server _

| —

* Requests arrive in a burst, must queue up till served

* Same average arrival time, but almost all of the
requests experience large queue delays

* Even though average utilization is low

10/13/14

cs162 fal4 L19

So how do we model the burstiness?

* Elegant mathematical framework if you start
with exponential distribution

— Probability density function of a continuous
random variable with a mean of 1/A

— f(x) = Ae™
— “Memoryless”

1

Likelihood of an event occuring is
independent of how long we’ve been
waiting

— o o - - -

mean arrival interval (1/A)

Lots of short arrival intervals
(i.e., high instantaneous rate)

Few long gaps (i.e., low
instantaneous rate) 0

10/13/14 cs162 fa14 119 X (A)

How Long should we expect to wait?

* RespTime = ServTime * 1/(1-U)

— Better if gaussian (spread around the mean)

* Variance in R =S/(1-U)?

' f‘. “'Ar-'
\
N }i\\‘f\“ W ;
e = . I |

|
o o Y / R L - -~
!] K . » - s J r
‘ Bl £ 2 o o Ff & 1\ ¢ #
s e 1 '\ ¥\

L 4 e | | 7

!(7

_

Response Time

/N

Response Time vs. Utilization
EEEE

Service Time

0

Utilization 1

Little’s Law

arrivals ' / departures

B
2] >

T |

* |n any stable system
— Average arrival rate = Average departure rate
* the average number of tasks in the system (N) is equal to
the throughput (B) times the response time (L)
* N (ops) =B (ops/s) X L (s)
 Regardless of structure, bursts of requests, variation in service
— instantaneous variations, but it washes out in the average
— Overall requests match departures

10/13/14 cs162 fal4 L19

/0O Performance

Q 300 | Response
User .f_} Time (ms)
—_— —| o :
Thread| = device 500
Queue -
[OS Paths]

100

Response Time = Queue + I/O device service time

« Solutions? 0 00
— Make everything faster © 'Ighroughput (Utilization)
— More Decoupled (Parallelism) systems(% total BW)
« multiple independent buses or controllers
— Optimize the bottleneck to increase service rate
* Use the queue to optimize the service

— Do other useful work while waiting
* Queues absorb bursts and smooth the flow

« Admissions control (finite queues)
— Limits delays, but may introduce unfairness and livelock

e RSITY
£ O
A

=

T

X)

AR
e
P

Ex: Disk Scheduling to Minimize Seek

10/13/14 cs162 fal4 L19 10

Disk Performance Examples

e Assumptions:
— Ignoring queuing and controller times for now
— Avg seek time of 5ms,
— 7200RPM = Time for one rotation: 60000ms/7200 ~= 8ms
— Transfer rate of 4MByte/s, sector size of 1 KByte

« Read sector from random place on disk:
— Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 10ms to fetch/put data: 100 KByte/sec

* Read sector from random place in same cylinder:
— Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 5ms to fetch/put data: 200 KByte/sec

* Read next sector on same track:
— Transfer (0.25ms): 4 MByte/sec

« Key to using disk effectively (especially for file systems)
IS to minimize seek and rotational delays

Disk Scheduling

* Disk can do only one request at a time; What order do

you choose to do queued requests?
— Request denoted by (track, sector)

DO NI
user gy [ofm[®|af= (e mmm)y
Requests

» Scheduling algorithms: o
— First In First Out (FIFO) *
— Shortest Seek Time First T
— SCAN o
— C-SCAN

* |In our examples we ignore the sector
— Consider only track #

FIFO: First In First Out

 Schedule requests in the
order they arrive in the
queue

=
»
9
L
®
o
o

« Example:
— 5Request queue: 2, 1, 3, 6, 2,
— Scheduling order: 2, 1, 3, 6,
2,5
« 16 tracks, 6 seeks

* Pros: Fair among requesters

« Cons: Order of arrival may
be to random spots on the
disk = Very long seeks

SSTF: Shortest Seek Time First

Pick the request that’s closest

to the head on the disk

— Although called SSTF, include
rotational delay in calculation, as
rotation can be as long as seek

Example:

— Request queue: 2,1, 3,6, 2,5
— Scheduling order: 5, 6, 3, 2, 2, 1
— 6 tracks, 4 seeks

Pros: reduce seeks

Cons: may lead to starvation
— Greedy. Not optimal

SCAN

Implements an Elevator Algorithm:

take the closest request in the
direction of travel

Example:

— Request queue: 2,1,3,6,2,5
— Head is moving towards center
— Scheduling order: 5, 3,2,2,1, 6

— 8 tracks, 4 seeks

Pros:
— No starvation
— Low seek

Cons: favors middle tracks
— May spend time on sparse tracks
while dense requests elsewhere

C-SCAN

Like SCAN but only serves request in
only one direction

[72)
x
L
112}
Q
Q

Example:
— Request queue: 2,1, 3,6, 2,5
— Head only serves request on its way
from center towards edge
— Scheduling order: 5,6, 1, 2, 2,3

— 8 tracks, 5 seeks

Pros:
— Fairer than SCAN

— Accumulate work in remote region then
go get it

Cons: longer seeks on the way back

Optimization: dither to pickup nearby
requests as you go

When is the disk performance highest@

10/13/14

When there are big sequential reads, or

When there is so much work to do that they
can be piggy backed (c-scan)

OK, to be inefficient when things are mostly
idle

Bursts are both a threat and an opportunity

<your idea for optimization goes here>
— Waste space for speed?

cs162 fal4 L19 17

Ex: Concurrency to break the bottleneck

e Busses provide a way of connecting many (N)
different things with a single set of wires and
standard connections and protocols

— N? relationships with 1 set of wires (!!!)
* But only one transaction can go on at a time

— The rest have to wait
— Queue up at “bus arbitration”

18

10/13/14 cs162 fal4 L19

PCI Bus evolution

« PCI started life out as a bus
— 32 physical bits double for address/data

« But a parallel bus has many limitations
— Multiplexing address/data for many requests
— Slowest device must be able to tell what’s happening

=>» Bus speed is set to that of the slowest device

el Phoen xBios ™

Ol D885 BI0S
LEPVOFTOX 1508

2 L 73086455 §

AT

W) 18

PCI Express “Bus”

* No longer a parallel bus

« Really a collection of fast serial channels or “lanes”

* Devices can use as many as they need to achieve a
desired bandwidth

« Slow devices don’t have to share with fast ones

« Both motherboard slots and daughter cards are sized
for the number of lanes, x4, x8, or x16

« Speeds (in an x16 configuration):
— v1.x: 4 GB/s (40 GT/s)
— v2.X: 8 GB/s (80 GT/s)
— v3.0: 15.75 GB/s (128 GT/s)
— v4.0: 31.51 GB/s (256 GT/s)

3.0+ Speeds are competitive
with block memory-to-memory operations on the CPU

PCI Express Interface (Linux)

* One of the successes of device abstraction in Linux was the ability to
migrate from PCI to PCI-Express

« Although the physical interconnect changed completely, the old AP still
worked

* Drivers written for older PCI devices still worked, because of the
standardized API for both models of the interface

« PCl register map:

0x0 0x1 0x2 0x3 0x4 0x5 O0x6 0x7 0x8 0x9 Oxa Oxb Oxc 0Oxd Oxe 0xf
Vendor | Device | Command Status | Revis- Class Code Cache [Latency | Header | BIST
0x00 1D 1D Reg. Reg. 'ﬂ;‘ Line | Timer | Type
Base Base Base Base
0x10 Address 0 Address 1 Address 2 Address 3
Base Base CardBus Subsytem Subsytem
0x20 Address 4 Address 5 (IS pointer Vendor ID Device ID
Expansion ROM | IRQ IRQ | Min_Gnt | Max_Lat
0x30 Base Address Line | Pin
- Required Register
- Optional Register
Figure 12-2. The standardized PCI configuration registers

Figure from “Linux Device Drivers,” 3 Ed, Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman

PCIl Express Bus

In practice PCIl is used as the interface to many
other interconnects on a PC:

PClBus0 PClBus 1
—_— -

} u |

RAM CPU

Figure 12-1. Layout of a typical PCI system

OS Solutions

* Reduce the impact of I/O delays by doing
other useful work in the meantime.

* Reduce overhead through user level drivers

10/13/14 cs162 fal4 L19 23

How do we hide I/O latency?

 Blocking Interface: “Wait”

— When request data (e.g., read () system call), put
process to sleep until data is ready

— When write data (e.g., write () system call), put process
to sleep until device is ready for data

« Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of
bytes successfully transferred to kernel

— Read may return nothing, write may write nothing

« Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
iImmediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Kernel vs User-level |/O

» Both are popular/practical for different reasons:

— Kernel-level drivers for critical devices that must keep
running, e.g. display drivers.

» Programming is a major effort, correct operation of the rest
of the kernel depends on correct driver operation.

— User-level drivers for devices that are non-
threatening, e.g USB devices in Linux (libusb).
* Provide higher-level primitives to the programmer, avoid
every driver doing low-level I/O register tweaking.
« The multitude of USB devices can be supported by Less-
Than-Wizard programmers.

« New drivers don’ t have to be compiled for each version of
the OS, and loaded into the kernel.

'
A XG4
(S

Kernel vs User-level Programming Sty!

« Kernel-level drivers

— Have a much more limited set of resources available:
* Only a fraction of libc routines typically available.

« Memory allocation (e.g. Linux kmalloc) much more limited in
capacity and required to be physically contiguous.

« Should avoid blocking calls.

« Can use asynchrony with other kernel functions but tricky
with user code.

« User-level drivers

— Similar to other application programs but:

« Will be called often — should do its work fast, or postpone it —
or do it in the background.

« Can use threads, blocking operations (usually much simpler)
or non-blocking or asynchronous.

Summary

* |10 and data transfers often described by linear
performance model and utilization model

— T(n)=S+n/B
— U = Service Rate / Request Rate

* But for shared resources burstiness in request
rate can introduce substantial delays

* Subsystem design focuses on eliminating
bottlenecks, e.g.,

— disk scheduling to minimize seek and latency
overhead

— Multiple lanes to allow simultaneous transfers

— Non-blocking requests (or threads) to overlap |10 and
compute

— User level access to devices

10/13/14 cs162 fal4 L19 27

