On to I/O via Virtual Memory

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 20
October 15, 2014

Reading: A&D 11.2 (OSC 13)
HW 4 out
Proj 2 out

... bottom lines of the long road here

Virtual-to-physical address translation provides the illusion of a
large, sparsely occupied virtual address space for every process

— Used to solve many OS requirements
* Protection, memory allocation, multi-programming, sharing, fast IO (!!!)
— Implemented through mapping structures

e Exponents matter (2220 millions, 2230, 2260 gazillions)
* Has to be VERY FAST in the common (success) case

Caches provide the illusion of a very large, fast physical
memory

— Essential to performance (100x) on modern machines

Similar techniques and trade-offs in cache of translations
and memory blocks

All aspects of modern OS design must be cache friendly
— Slow OS perceived as Slow Computer

10/13/14 cs162 fal4 L19 2

Objectives

e Solidify understanding of Virtual Memory

10/13/14 cs162 fal4 L19 3

Recall: the most basic OS function

OS Basics: Loading

Threads
Address Spaces Windows
Processes Files Sockets
Software OS Hardware Virtualization |
ISA

Processor Protection
f Boundar
Networks
storag=

L)

Displays

v Inputs

4
Ll N =3 |

10/13/14 cs162 fal4 L19 4

Loading an executable into memory

disk (huge) memory

T
S~ -

info
-
T

exe

* .exe
— lives on disk in the file system

— contains contents of code & data segments, relocation entries and
symbols

— OS loads it into memory, initializes registers (and initial stack pointer)
— program sets up stack and heap upon initialization: CRTO

10/13/14 cs162 fal4 L19

Create Virtual Address Space of the Proces

disk (huge)

EEEO

exe

process VAS

kernel

~_ “

—-sbrk

memory

user page
frames

user
pagetable

kernel code
& data

e Utilized pages in the VAS are backed by page blocks on disk
— called the backing store
— typically in an optimized block store, but can think of it like a file

10/13/14

cs162 fal4 L19

Create Virtual Address Space of the Procesgi;

disk (huge, TB)

| info
stack
data
code hea P
data
w

* User Page table ma

* All the utilized regions are backed on disk
— swapped into and out of memory as needed

* For every process

10/13/14

process VAS (GBs)

kernel

memory

cs162 fal4 L19

ns entire VAS

user page
frames

user
pagetable

kernel code
& data

Create Virtual Address Space of the Procesgi;

disk (huge, TB)

—

: ~ stack

data

 code heap
data

VAS — per process

kernel

PT

/
/

memory

 User Page table maps entire VAS
— resident pages to the frame in memory they occupy

— the portion of it that the HW needs to access must be
resident in memory

10/13/14

cs162 fal4 L19

user page
frames

user
pagetable

kernel code
& data

Provide Backing Store for VAS

}k(hﬁe,TB)\ VAS — per process memory
~_ kernel | .
_info__ y T staek-—-1-] N USerpage
. - STaCK -y et frames
E heap J:':-:-:-:—:-—_--Tfff_'_‘_ ---------------
exe el i Tr— Frrazerd .
- ._____:: heap ________________ -e user
data b ---- 0/ pagetable
i S dataoo..]
L e prema 2/
code & data
%

* User Page table maps entire VAS

* Resident pages mapped to memory frames

* For all other pages, OS must record where to find them
on disk

10/13/14 cs162 fal4 L19 9

What data structure is required to map
non-resident pages to disk?

* FindBlock(PID, page#) => disk_block

* Like the PT, but purely software
* Where to store it?

e Usually want backing store for resident pages
too.

* Could use hash table (like Inverted PT)

10/13/14 cs162 fal4 L19 10

Provide Backing Store for VAS

disk (huge, TB)

T
S

;-nh-] stack
stack |~ _ heap
N heap

N
\ N
\ \
\ ata
S
3} \
-~

A

A N
A N N
3 \ N
N \, .
N
. €ode)
N N
N \‘

10/13/14

data \
\
\ \
\ LY N\
N
\ Y \‘\
\ AY
N \ \
\ N
\ AY

«. VAS2
kernel
o
stack
e
ML hea
4 P
. data
°
code

AN

VAS 1

PT1

kernel

N
7
Z

memory

NN AL

14 119

user page
frames

user
pagetable

kernel co
& data

11

On page Fault ...

disk (huge, TB) VAS 1 PT 1
M memory
w kernel

B e B L EEEEE ¢
E stack stack \
. e
stack | heap | T / user page
i s— / frames
] heap N \\\ ______________________
Y. data 5
y e VAS 2 PI?
dat \‘code\\ Voo T - user
w\\ / pagetable
NS h kernel L/
NN stack E‘e(rjnel co
RN - - ata
* i
1\ heap active process & PT
I /
. data
o
code /

12

On page Fault ... find & start load

disk (huge, TB)

T
S

10/13/14

VAS 1

PT1

kernel

AN

| stack
StaCk \\ . heap ~~~~~~~~~~~~~~~~~~~~~
o eap |
p aald
N \\ \\ \\ ‘k<-—-—~V—-A-$--2
data . code [
w \:;\\ kernel
\\\ \\\ ‘ ’
stack
e
N \“ hea
L P
data
°
code

N\ /

memory

A

14 119

user page
frames

user
pagetable

kernel co
& data

active process & PT

13

On page Fault ... schedule otherPor T

N/
/
H7
R
-

7
8
%

2) 4
d‘e

disk (huge, TB) VAS 1 PT 1
m memory
w kernel

R T —— q
ot stack stack . 74
stack heap | h e Tes. / user page
o ' 2 T b / | frames
| heap e |
P VAS 2 S ad
NN N user
data . code) - etablc
_// kernel L/ Pag
1 stack kernel co
== - & data
& heap P active process & PT

10/13/14

AN

14

On page Fault ... update PTE

disk (huge, TB)

T
S

10/13/14

VAS 1

PT1

kernel

AN

- stack
stack heap | T
'_'vn h b\ J . S S
ea N N N 000 TTTTTeeeea
P aata
|8 AN \\\ Akq.____/__A_S 2
data 1. code i
\\\\\\\\ﬁ______L%/lq//r‘y\ kernel
\\\ \\\ \ ’
stack
e
ML hea
H P
. data
°
code

memory

A

N\ /

4119

user page
frames

user
pagetable

kernel co
& data

active process & PT

15

Eventually reschedule faulting thread

disk (huge, TB)

i

stack |~ _ heap

heap || \

10/13/14

[stack | >/é

VAS 1 PT1

memory

kernel

N
AY
\ \ \
\ N
3 . N
N
data r A
\ N
3 S ‘\
< N
\ N \
N
\ 3 I
3 \
\
\ \ !
\ \
\ AY

Vi o o - - - -

AN

|
¥
AN
N\

14 119

user page
frames

user
pagetable

kernel co
& data

active process & PT

16

Where does the OS get the frame?

* Keeps a free list
* Unix runs a “reaper” if memory gets too full
* As a last resort, evict a dirty page first

10/13/14 cs162 fal4 L19 17

How many frames per process?

* Like thread scheduling, need to “schedule”
memory resources

— allocation of frames per process
e utilization? fairness? priority?

— allocation of disk paging bandwith

10/13/14 cs162 fal4 L19 18

Management & Access to the Memory Hierar

Speed

Managed in Hardware

Managed in Software - OS

Size (byte

Processor
1 TLB
COOr — E PT
2 — PT
D
Sl lel |8]
o| |S > PT Secondary
el 121 L 2 . Secondary Storage
Main 3 (Disk)
— torage
1 TLB — — D W Memory (SSD)
o] |= I 5 QO (DRAM)
Q @ S? D O
2] L o a3
o) Q >)
|
Accessed in Hardware 5 A 10.000.000
ns): 0.3 1 3 10-30 100 e 1’ms) (’10 n’]s)
>s): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs

10/13/14

cs162 fal4 L19

19

Summary

10/13/14

Virtual address space for protection, efficient use of
memory, AND multi-programming.

— hardware checks & translates when present
— OS handles EVERYTHING ELSE

Conceptually memory is just a cache for blocks of VAS
that live on disk

— but can never access the disk directly

Address translation provides the basis for sharing
— shared blocks of disk AND shared pages in memory

How else can we use this mechanism?

— sharing ??7? @
— disks transfers on demand ???

— accessing objects in blocks using load/store instructions

cs162 fal4 L19 20

Historical Perspective

* Mainframes and minicomputers (servers) were
“always paging”
— memory was limited
— processor rates <> disk xfer rates were much closer

* When overloaded would THRASH
— with good OS design still made progress

* Modern systems hardly every page
— primarily a safety net + lots of untouched “stuff”
— plus all the other advantages of managing a VAS

* Effective use of the entire storage hierarchy is
absolutely essential

10/13/14 cs162 fal4 L19 21

Admin: Projects

* Project1l

— deep understanding of OS structure, interrupt, threads,
thread implementation, synchronization, scheduling, and
interactions of scheduling and synchronization

— work effectively in a team
» effective teams work together with a plan
=> schedule three 1-hour joint work times per week

* Project 2
— exe load and VAS creation provided for you

— syscall processing, FORK+EXEC, file descriptors backing
user file handles, ARGV

* registers & stack frames

— two development threads for team
* but still need to work together

10/13/14 cs162 fal4 L19 22

You are here ...

Course Structure: Spiral

S
@
g
N o)
“ nce (3
5 O intro \& g
— ~
O, (1]
% lo 5o° 2
Y) Aauens® &
O ¢ &
e

UCB CS162 Fa14 L1

19

9/26/14
cs162 fal4 L10

23

OS Basics: I/0O

10/15/14

Threads
Address Spaces Windows
Processes Files Sockets

Software OS Hardware Virtualization

Hardware /SA

~

Processor/ Protection
r Boundary
Networks

2\?@ Displays
UCB CS162 Fa14 .20 \NPULS

24

The Question of the Day

 The OS provides convenient, protected, high-
level abstractions of shared physical resources

— Processors => Threads
— Memory => Address Space
— Disk Blocks => Files
— Network Packets => Messages
— Keyboard, Mouse, Display => Windows
* So, how does it access the hardware to build
these?

10/13/14 cs162 fal4 L19 25

In a picture

Read / -
Write i— o 1 wires
Processor :>: @? |
I
Core o |
) ': E interruptsl (_30_nt_ro_lle_rs_| ‘ .
7} = Q] - B - =
® A
% > ® Read / DMA transfer t——=| Secondary
— Write : Storage
Core | [N Ma (Disk)
— — D W Memor
- 1/
s i 'c\; o 8 (DRAM)
Q O QD ® O
al (8] 5] |23
ol |=| |3
wn ()

* |/O devices you recognize are supported by |/O Controllers

* Processors accesses them by reading and writing 10 registers as if
they were memory

— Write commands and arguments, read status and results

10/13/14 cs162 fal4 L19 26

Modern I/O Systems

ah,

SCSI bus

monitor ‘\\\\m/mmum
cache
graphics bridge/memory SeSl contoller
controller controller /, A
[ZE==EF\ma

PCI bus

—

IDE disk controller

expansion bus
interface

keyboard

expansion bus

parallel
port

serial
port

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

Systerr# Bus

HyperTransport (32-pair)
PCI Express 2.0 (X32)
Infiniband (QDR 12X)
Serial ATA (SATA-300)

gigabit ethernet

SCSI| bus
FireWire
nard cisk. | N
| |
\ | |
0.00001 0.001 0.1 10 1000 100000 10m

* Device Rates vary over 12 orders of magnitude !!!
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!
— Better not waste time waiting for slow devices

What does it mean for OS?

What’s below the surface ??

Application / Service

streams
High Level I/O
'Low Level I/O| handles
:> Syscall registers
File System descriptors

:> | I/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

Physical Devic

-

9/5/14

cs162 fald L3 35

y4
Memory mapped I/O
Direct Memory Access
Interrupts

10/13/14 cs162 fal4 L19 29

How Does the Processor Talk to Devices?

Processor Memory Bus Regular
Memory

Device

A
e
>
) ;—‘
o,
/ -—
’k\

Bus
Controller Se—>—>
Other Devices pddress+
or e or Buses Data Bus Hardware
8 erru;ﬁ — Interface || Controller
Bl Interrupt Request
read
write Addressable
: : trol Memor
« CPU interacts with a Controller Satis o
— Contains a set of registers that Registers Queues
can be read and written (port 0x20)

— May contain memory for request
gueues or bit-mapped images

Memory Mapped
Region: 0x8f008020

* Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
— 1/O instructions: in/out instructions (e.g., Intel’s 0x21,AL)

— Memory mapped I/O: load/store instructions
* Registers/memory appear in physical address space
 1/O accomplished with load and store instructions

Example: Memory-Mapped Display Controlle

Memory-Mapped:

— Hardware maps control registers and display memory 0x80020000 Graphics
into physical address space Command
« Addresses set by hardware jumpers or programming at Queue
. boottime) 0x80010000
— Simply writing to display memory (also called the “frame Display
buffer”) changes image on screen Memory

« Addr: 0x8000FO00—0x8000FFFF

— Writing graphics description to command-queue area 0x8000F000
« Say enter a set of triangles that describe some scene
« Addr: 0x80010000—0x8001FFFF

— Writing to the command register may cause on-board gx0007F004 | Command

graphics hardware to do something
- Say render the above scene 0x0007F000 | Status

« Addr: 0x0007F004
Can protect with address translation _—3

Physical Address
~ ,BSpace

e)

NSe—

Transferring Data To/From Controller

* Programmed 1/O:

— Each byte transferred via processor in/out or load/store

— Pro: Simple hardware, easy to program

— Con: Consumes processor cycles proportional to data size
e Direct Memory Access:

— Give controller access to memory bus

— Ask it to transfer data blocks to/from memory directly
« Sample interaction with DMA controller (from OSC):

1. device driver is told
to transfer disk data CPU
to buffer at address X

5. DMA controller 2. device driver tells

transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buff s
and decreasing C at address X
untilC =0 5 ;
us
6. when C = 0, DMA : &—GPWWWE
interrupts CPU to signal addrlrcl)tnt:";)l]llF)e tr / ALiris)
transfer completion len /
g 7 PCI bus)
3. disk controller initiates
IDE"disk DMA transfer
controller 4. disk controller sends

each byte to DMA

controller
disk) (disk

/O Device Notifying the OS

* The OS needs to know when:
— The 1/0O device has completed an operation
— The 1/0O operation has encountered an error

* |/O Interrupt:
— Device generates an interrupt whenever it needs service
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
« 1/O device puts completion information in status register
— Pro: low overhead

— Con: may waste many cycles on polling if infrequent or unpredictable 1/
O operations

 Actual devices combine both polling and interrupts

— For instance — High-bandwidth network adapter:

» Interrupt for first incoming packet
« Poll for following packets until hardware queues are empty

What is the Role of I/O?

Without I/0O, computers are useless (disembodied brains?)

But... thousands of devices, each slightly different
— How can we standardize the interfaces to these devices?

Devices unreliable: media failures and transmission errors
— How can we make them reliable???

Devices unpredictable and/or slow

— How can we manage them if we don’t know what they will do or
how they will perform?

If time — take apart a new machine

10/13/14 cs162 fal4 L19 35

My New MacPro

Hardware Overview:
ATA Model N
. odel Name:

gl Model Identifier:
Bluetooth Processor Name:
Camera Processor Speed:

Card Reader Number of Processors:
Diagnostics Total Number of Cores:

Disc Burning
Ethernet Cards
Fibre Channel
FireWire
Graphics/Displays
Hardware RAID
Memory

PCI Cards

Parallel SCSI
Power

Printers

SAS

SATA/SATA Express
SPI

Storage
Thunderbolt

USB

V Network

Firewall
Locations
Volumes
WWAN

1()/13,/%*i

L2 Cache (per Core):
L3 Cache:

Memory:

Boot ROM Version:
SMC Version (system):

Serial Number (system):

Hardware UUID:

MacBook Pro
MacBookProl1,2
Intel Core i7

2 GHz

1

4

256 KB

6 MB

16 GB
MBP112.0138.B07
2.18f10
C02MXOM3FD58
63B1A15F-36A2-5313

cslbZ tald L1Y

MacBook Pro
Retina, 15-inch, Late 2013

Processor 2 GHz Intel Core i7
Memory 16 GB 1600 MHz DDR3

Graphics Intel Iris Pro 1536 MB

36

Intel i7 Core ...

1x16 lanes
PCl Express* 3.0 Graphics

2x8 lanes
PCl Express* 3.0 Graphics

DDR3/3L

4th Generati:)n Up to 1600 MHz"
Intel® Core

Processors

Processor Graphics DDR3/3L
Up to 1600 MHz"?

1x8 and 2x4 lanes
PCl Express* 3.0 Graphics

Three Independent
Display Support™

Intel* High

Up to 8 x PCl Express* 2.0 Definition Audio'

Up to 6 x USB 3.0 Ports
14 x USB 2.0 Ports
XHCI; USB Port Disable

Intel* 287
Chipset

6 X SATA ports, eSATA;
Port Disable

Intel* Integrated
10/100/1000 MAC

Intel* Rapid Storage
Technology with RAID™

Intel* Smart Connect
Technology®

Intel* ME 9.0 Firmware
and BIOS Support

Intel* Ethernet Connection L b

Technology*

Intel* Extreme
Tuning Support

10/13/14 cs162 fal4 L19 37

My Disk

Apple SSD Controller:

Vendor: Apple

Product: SSD Controller

Physical Interconnect: PCI

Link Width: x2

Link Speed: 5.0 GT/s

Description: AHCI Version 1.30 Supported

APPLE SSD SMO256F:

Capacity: 251 GB (251,000,193,024 bytes)
Model: APPLE SSD SM0256F
Revision: UXM2JA1Q
Serial Number: S1K4NYAF592211
Native Command Queuing: Yes
Queue Depth: 32
Removable Media: No
Detachable Drive: No
BSD Name: disk0
Medium Type: Solid State
TRIM Support: Yes
Partition Map Type: GPT (GUID Partition Table)
S.M.A.R.T. status: Verified
Volumes:
EFI:

Capacity: 209.7 MB (209,715,200 bytes)
BSD Name: diskOsl

Content: EFI

Macintosh HD:
Capacity: 250.14 GB (250,140,434,432 bytes)
Available: 195.43 GB (195,428,974,592 bytes)
Writable: Yes

File System: Journaled HFS+

BSD Name: disk0s2

Mount Point: /

Content: Apple_HFS

Volume UUID: 90C81FF2-EED6-3FEE-BA72-294D2DBFB952

Rarnviarv HMN

10/13/14 cs162 fal4 L19 38

My Graphics

Haswell introduces configurations with
large graphics & an on-package eDRAM
cache

Cache attributes
High throughput and low latency

Flat power vs. sustained bandwidth
curve

Fully shared between Graphics, Media,
and Cores

10/13/14 N

Low latency on package interface to CPU

Intel Iris Pro:

Chipset Model:
Type:
Bus:
VRAM (Dynamic, Max):
Vendor:
Device ID:
Revision ID:
Displays:
Color LCD:

Intel Iris Pro
GPU

Built-In

1536 MB

Intel (0x8086)
0x0d26
0x0008

Display Type: Retina LCD
Resolution: 2880 x 1800

Retina: Yes

Pixel Depth: 32-Bit Color (ARGB8888)

Main Display: Yes

Mirror: Off
Online: Yes
Built-In: Yes

Processor
Graphics

