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Objectives

* Understand how caching and caching effects
pervade OS design.

e Put together all the mechanics around TLBs,
Paging, and Memory caches

e Solidify understanding of Virtual Memory
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Review: Memory Hierarchy

Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology

— Provide access at speed offered by the fastest technology
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Examples

e vmstat —s
* top
* mac-os utility/activity
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Where does caching arise in Operating
Systems ?
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Where does caching arise in Operating
Systems ?

* Direct use of caching techniques
— paged virtual memory (mem as cache for disk)
— TLB (cache of PTEs)
— file systems (cache disk blocks in memory)
— DNS (cache hosthame => IP address translations)
— Web proxies (cache recently accessed pages)

* Which pages to keep in memory?
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Where does caching arise in Operating

Systems ?
* Indirect - dealing with cache effects

* Process scheduling
— which and how many processes are active ?
— large memory footprints versus small ones ?

— priorities ?
* Impact of thread scheduling on cache performance

— rapid interleaving of threads (small quantum) may degrade cache
performance
* increase ave MAT !!]

* Designing operating system data structures for
cache performance.

* All of these are much more pronounced with
multiprocessors / multicores
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Working Set Model (Denning ~70)

* As a program executes it transitions through a
sequence of “working sets” consisting of
varying sized subsets of the address space
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Cache Behavior under WS model
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 Amortized by fraction of time the WS is active

* Transitions from one WS to the next

e (Capacity, Conflict, Compulsory misses

* Applicable to memory caches and pages. Others ?
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Another model of Locality: Zipf

P access(rank) = 1/rank
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Rank
* Likelihood of accessing item of rank r is al/r?

* Although rare to access items below the top few, there are so
many that it yields a “heavy tailed” distribution.

e Substantial value from even a tiny cache

e Substantial misses from even a very large one
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Where does caching arise in Operating
Systems ?

* Maintaining the correctness of various caches

e TLB consistent with PT across context
switches ?

e Across updates to the PT ?

e Shared pages mapped into VAS of multiple
processes ?
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Going into detail on TLB
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What Actually Happens on a TLB Miss&

* Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
 If PTE valid, hardware fills TLB and processor never knows

 If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

« Software traversed Page tables (ala MIPS)

— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
 If PTE valid, fills TLB and returns from fault
 If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults
since they use translation for many things
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

— Address Space just changed, so TLB entries no longer valid!

* Options?
— Invalidate TLB: simple but might be expensive
« What if switching frequently between processes?

— Include ProcessID in TLB
 This is an architectural solution: needs hardware

« What if translation tables change?

— For example, to move page from memory to disk or vice
versa...

— Must invalidate TLB entry!
« Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

‘— TLB |—>|Cache |—*| Memory

* Needs to be really fast
— Critical path of memory access
— Seems to argue for Direct Mapped or Low Associativity

 However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!
— This argues that cost of Conflict (Miss Time) is much higher
than slightly increased cost of access (Hit Time)
» Thrashing: continuous conflicts between accesses

— What if use low order bits of page as index into TLB?
* First page of code, data, stack may map to same entry
* Need 3-way associativity at least?

— What if use high order bits as index?
wiz1a ° TLB mostly unused for small, pregrams 16




TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity
* TLB usually organized as fully-associative cache

—Lookup is by Virtual Address
—Returns Physical Address + other info

* What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”
* When does TLB lookup occur relative to memory cache
access?
—Before memory cache lookup?
—In parallel with memory cache lookup?
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Reducing translation time further

« As described, TLB lookup is in serial with cache lookup:

Virtual Address

10
\V page no. offset

TLB Lookup

/
/,
A
/

|~ 7 Access’
V i Rights ; PA
/ :

P page no. offset
10

Physical Address

« Machines with TLBs go one step further: they overlap TLB lookup
with cache access.

— Works because offset available early
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Overlapping TLB & Cache Access (1/2)

« Main idea:

— Offset in virtual address exactly covers the
“cache index” and “byte select”

— Thus can select the cached byte(s) in parallel to
perform address translation

virtual address | Virtual Page # | Offset |

physical address | tag/page # | index | byte
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Overlapping TLB & Cache Access (1/2]

* Here is how this might work with a 4K cache:

32 |TLB
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Putting Everything Together: Address Translation |

Virtual Address:

rtua Irua Physical
P1 index] P2 index Memory:

PageTabIePtr Pr\sic -

Page Table
(15t level)

Page Table
(2nd level)
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Putting Everything Together: TLB

Virtual Address:

[EVE] Irtua Physical
lP1 index] P2 in xl Memory:
Physic re
ySica
P #
TLB:
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Putting Everything Together: Cache

Physical
Memory:
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Admin: Projects

* Project1l

— deep understanding of OS structure, threads, thread
implementation, synchronization, scheduling, and
interactions of scheduling and synchronization

— work effectively in a team

 effective teams work together with a plan
=> schedule three 1-hour joint work times per week

* Project 2
— exe load and VAS creation provided for you

— syscall processing, FORK+EXEC, file descriptors
backing user file handles, ARGV

* registers & stack frames

— two development threads for team
* but still need to work together
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Virtual Memory — the disk level
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Reacall: the most basic OS function

OS Basics: Loading

Threads
Address Spaces Windows
Processes Files Sockets
Software OS Hardware Virtualization |
ISA

Processor Protection
f Boundar
Networks
storag=

L)

Displays

v Inputs

4
Ll N =3 |
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Loading an executable into memory

disk (huge) memory

T
S~ -

info
-
T

exe

* .exe
— lives on disk in the file system

— contains contents of code & data segments, relocation entries and
symbols

— OS loads it into memory, initializes registers (and initial stack pointer)
— program sets up stack and heap upon initialization: CRTO
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Create Virtual Address Space of the Proces§

disk (huge)

EEEO

exe

process VAS

kernel

~_  “

—-sbrk

memory

user page
frames

user
pagetable

kernel code
& data

e Utilized pages in the VAS are backed by a page block on

disk

— called the backing store
— typically in an optimized block store, but can think of it like a file

10/13/14

cs162 fal4 L19

28



Create Virtual Address Space of the Procesgi;

disk (huge, TB)

| info
stack
data
code hea P
data
w

* User Page table ma

* All the utilized regions are backed on disk
— swapped into and out of memory as needed

* For every process
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process VAS (GBs)

kernel

memory
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Create Virtual Address Space of the Procesgi;

disk (huge, TB)

—

: ~ stack

data

 code heap
data

VAS — per process

kernel

PT

/
/

memory

user page
frames

 User Page table maps entire VAS
— resident pages to the frame in memory they occupy

— the portion of it that the HW needs to access must be
resident in memory
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Provide Backing Store for VAS

}k(hﬁe,TB)\ VAS — per process memory
~_ kernel | .
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exe el i Tr— Frrazerd .
- ._____:: heap ________________ -e user
data b ---- 0/ pagetable
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* User Page table maps entire VAS

* Resident pages mapped to memory frames

* For all other pages, OS must record where to find them
on disk
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What data structure is required to map
non-resident pages to disk?

* FindBlock(PID, page#) => disk_block

* Like the PT, but purely software
* Where to store it?

e Usually want backing store for resident pages
too.

* Could use hash table (like Inverted PT)
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Provide Backing Store for VAS

disk (huge, TB)

T
S

;-nh-] stack
stack |~ _ heap
N heap

N
\ N
\ \
\ ata
S
3} \
-~

A

A N
A N N
3 \ N
N \, .
N
. €ode )
N N
N \‘

10/13/14

data \
\
\ \
\ LY N\
N
\ Y \‘\
\ AY
N \ \
\ N
\ AY

«. VAS2
kernel
o
stack
e
ML hea
4 P
. data
°
code

AN

VAS 1

PT1

kernel

N
7
Z

memory

NN AL

14 119

user page
frames

user
pagetable

kernel co
& data

33



On page Fault ...

disk (huge, TB) VAS 1 PT 1
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On page Fault ... find & start load

disk (huge, TB)
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On page Fault ... schedule otherPor T
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On page Fault ... update PTE

disk (huge, TB)
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Eventually reschedule faulting thread

disk (huge, TB)
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Where does the OS get the frame?

* Keeps a free list
* Unix runs a “reaper” if memory gets too full
* As a last resort, evict a dirty page first
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How many frames per process?

* Like thread scheduling, need to “schedule”
memory resources

— allocation of frames per process
e utilization? fairness? priority?

— allocation of disk paging bandwith
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Historical Perspective

 Mainframes and minicomputers (servers) were
“always paging”
— memory was limited
— processor rates <> disk xfer rates were much closer
* When overloaded would THRASH
— with good OS design still made progress
* Modern systems hardly every page
— primarily a safety net + lots of untouched “stuff”

— plus all the other advantages of managing a VAS
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Summary

10/13/14

Virtual address space for protection, efficient use of
memory, AND multi-programming.

— hardware checks & translates when present
— OS handles EVERYTHING ELSE

Conceptually memory is just a cache for blocks of VAS
that live on disk

— but can never access the disk directly

Address translation provides the basis for sharing
— shared blocks of disk AND shared pages in memory

How else can we use this mechanism?
— sharing ??? @
— disks transfers on demand ???

— accessing objects in blocks using load/store instructions
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