Caching in Operating Systems
Design & Systems Programming

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 19
October 13, 2014

Reading: A&D 9.6-7
HW 4 going out
Proj 2 out today

Objectives

* Understand how caching and caching effects
pervade OS design.

e Put together all the mechanics around TLBs,
Paging, and Memory caches

e Solidify understanding of Virtual Memory

10/13/14 cs162 fal4 L19 2

Review: Memory Hierarchy

Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology

— Provide access at speed offered by the fastest technology

Processor
Core
—
Y] r N
0]
Sl 1l |8
o} 2] Secondary
2l =1 L . Secondary Storage
Core — an Storage (Disk)
— — D W Memory (SSD)
2 =] IR 5 O (DRAM)
Q @ g,) ® O
21 18 Q &3
(©)
s| |a] |®
Speed (ns): 0.3 1 3 10-30 100 Zé’?’?nosfi 10(’105)?62;)0
Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs

10/13/14 cs162 fal4 L19

Examples

e vmstat —s
* top
* mac-os utility/activity

10/13/14 cs162 fal4 L19 4

Where does caching arise in Operating
Systems ?

10/13/14 cs162 fal4 L19 5

Where does caching arise in Operating
Systems ?

* Direct use of caching techniques
— paged virtual memory (mem as cache for disk)
— TLB (cache of PTEs)
— file systems (cache disk blocks in memory)
— DNS (cache hosthame => IP address translations)
— Web proxies (cache recently accessed pages)

* Which pages to keep in memory?

10/13/14 cs162 fal4 L19 6

Where does caching arise in Operating

Systems ?
* Indirect - dealing with cache effects

* Process scheduling
— which and how many processes are active ?
— large memory footprints versus small ones ?

— priorities ?
* Impact of thread scheduling on cache performance

— rapid interleaving of threads (small quantum) may degrade cache
performance
* increase ave MAT !!]

* Designing operating system data structures for
cache performance.

* All of these are much more pronounced with
multiprocessors / multicores

10/13/14 cs162 fal4 L19

MP S

10/13/14

Memory

o &> n >

o > n |E>

cs162 fal4 L19

o &> n >

Working Set Model (Denning ~70)

* As a program executes it transitions through a
sequence of “working sets” consisting of
varying sized subsets of the address space

A

Address

Time

10/13/14 cs162 fal4 L19 9

Cache Behavior under WS model

1 b 4
% new working set fits |:>
o
e
T —
0 >

Cache Size

 Amortized by fraction of time the WS is active

* Transitions from one WS to the next

e (Capacity, Conflict, Compulsory misses

* Applicable to memory caches and pages. Others ?

10/13/14 cs162 fal4 L19 10

Another model of Locality: Zipf

P access(rank) = 1/rank
20% 1
18% 0.9
0.8
0.7

0.6

0.5

pop a=1 0.4

0.3

Popularity (% accesses)
g
Estimated Hit Rate

—Hit Rate(cache) 0.2

0.1

0% 0
135 7 91113151719212325272931333537394143454749

Rank
* Likelihood of accessing item of rank r is al/r?

* Although rare to access items below the top few, there are so
many that it yields a “heavy tailed” distribution.

e Substantial value from even a tiny cache

e Substantial misses from even a very large one
10/13/14 cs162 fald L19 11

Where does caching arise in Operating
Systems ?

* Maintaining the correctness of various caches

e TLB consistent with PT across context
switches ?

e Across updates to the PT ?

e Shared pages mapped into VAS of multiple
processes ?

10/13/14 cs162 fal4 L19 12

Going into detail on TLB

10/13/14 cs162 fal4 L19 13

What Actually Happens on a TLB Miss&

* Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
 If PTE valid, hardware fills TLB and processor never knows

 If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

« Software traversed Page tables (ala MIPS)

— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
 If PTE valid, fills TLB and returns from fault
 If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults
since they use translation for many things

10/13/14 cs162 fal4 L19 14

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

— Address Space just changed, so TLB entries no longer valid!

* Options?
— Invalidate TLB: simple but might be expensive
« What if switching frequently between processes?

— Include ProcessID in TLB
 This is an architectural solution: needs hardware

« What if translation tables change?

— For example, to move page from memory to disk or vice
versa...

— Must invalidate TLB entry!
« Otherwise, might think that page is still in memory!

10/13/14 cs162 fal4 L19 15

What TLB organization makes sense?

‘— TLB |—>|Cache |—*| Memory

* Needs to be really fast
— Critical path of memory access
— Seems to argue for Direct Mapped or Low Associativity

 However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!
— This argues that cost of Conflict (Miss Time) is much higher
than slightly increased cost of access (Hit Time)
» Thrashing: continuous conflicts between accesses

— What if use low order bits of page as index into TLB?
* First page of code, data, stack may map to same entry
* Need 3-way associativity at least?

— What if use high order bits as index?
wiz1a ° TLB mostly unused for small, pregrams 16

TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity
* TLB usually organized as fully-associative cache

—Lookup is by Virtual Address
—Returns Physical Address + other info

* What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”
* When does TLB lookup occur relative to memory cache
access?
—Before memory cache lookup?
—In parallel with memory cache lookup?

10/13/14 cs162 fal4 L19 17

Reducing translation time further

« As described, TLB lookup is in serial with cache lookup:

Virtual Address

10
\V page no. offset

TLB Lookup

/
/,
A
/

|~ 7 Access’
V i Rights ; PA
/ :

P page no. offset
10

Physical Address

« Machines with TLBs go one step further: they overlap TLB lookup
with cache access.

— Works because offset available early

10/13/14 cs162 fal4 L19 18

Overlapping TLB & Cache Access (1/2)

« Main idea:

— Offset in virtual address exactly covers the
“cache index” and “byte select”

— Thus can select the cached byte(s) in parallel to
perform address translation

virtual address | Virtual Page # | Offset |

physical address | tag/page # | index | byte

10/13/14 cs162 fal4 L19 19

Overlapping TLB & Cache Access (1/2]

* Here is how this might work with a 4K cache:

32 |TLB

Hit/
Miss

10/13/14

assoc
lookup _
‘ ‘lndex
20 10 2
page # disp |00

}

cs162 fald L19

P‘A\~ @/

> 4K Cache

—4 byteS v

P;A Déta

Hit/

v Miss

20

Putting Everything Together: Address Translation |

Virtual Address:

rtua Irua Physical
P1 index] P2 index Memory:

PageTabIePtr Pr\sic -

Page Table
(15t level)

Page Table
(2nd level)

10/13/14 cs162 fal4 L19 21

Putting Everything Together: TLB

Virtual Address:

[EVE] Irtua Physical
lP1 index] P2 in xl Memory:
Physic re
ySica
P #
TLB:

10/13/14 cs162 fal4 L19 22

Putting Everything Together: Cache

Physical
Memory:

10/13/14 cs162 fal4 L19 23

Admin: Projects

* Project1l

— deep understanding of OS structure, threads, thread
implementation, synchronization, scheduling, and
interactions of scheduling and synchronization

— work effectively in a team

 effective teams work together with a plan
=> schedule three 1-hour joint work times per week

* Project 2
— exe load and VAS creation provided for you

— syscall processing, FORK+EXEC, file descriptors
backing user file handles, ARGV

* registers & stack frames

— two development threads for team
* but still need to work together

10/13/14 cs162 fal4 L19 24

Virtual Memory — the disk level

10/13/14 cs162 fal4 L19 25

Reacall: the most basic OS function

OS Basics: Loading

Threads
Address Spaces Windows
Processes Files Sockets
Software OS Hardware Virtualization |
ISA

Processor Protection
f Boundar
Networks
storag=

L)

Displays

v Inputs

4
Ll N =3 |

10/13/14 cs162 fal4 L19 26

Loading an executable into memory

disk (huge) memory

T
S~ -

info
-
T

exe

* .exe
— lives on disk in the file system

— contains contents of code & data segments, relocation entries and
symbols

— OS loads it into memory, initializes registers (and initial stack pointer)
— program sets up stack and heap upon initialization: CRTO

10/13/14 cs162 fal4 L19 27

Create Virtual Address Space of the Proces§

disk (huge)

EEEO

exe

process VAS

kernel

~_ “

—-sbrk

memory

user page
frames

user
pagetable

kernel code
& data

e Utilized pages in the VAS are backed by a page block on

disk

— called the backing store
— typically in an optimized block store, but can think of it like a file

10/13/14

cs162 fal4 L19

28

Create Virtual Address Space of the Procesgi;

disk (huge, TB)

| info
stack
data
code hea P
data
w

* User Page table ma

* All the utilized regions are backed on disk
— swapped into and out of memory as needed

* For every process

10/13/14

process VAS (GBs)

kernel

memory

cs162 fal4 L19

ns entire VAS

user page
frames

user
pagetable

kernel code
& data

29

Create Virtual Address Space of the Procesgi;

disk (huge, TB)

—

: ~ stack

data

 code heap
data

VAS — per process

kernel

PT

/
/

memory

user page
frames

 User Page table maps entire VAS
— resident pages to the frame in memory they occupy

— the portion of it that the HW needs to access must be
resident in memory

10/13/14

cs162 fal4 L19

user
pagetable

kernel code
& data

30

Provide Backing Store for VAS

}k(hﬁe,TB)\ VAS — per process memory
~_ kernel | .
_info__ y T staek-—-1-] N USerpage
. - STaCK -y et frames
E heap J:':-:-:-:—:-—_--Tfff_'_‘_ ---------------
exe el i Tr— Frrazerd .
- ._____:: heap ________________ -e user
data b ---- 0/ pagetable
i S dataoo..]
L e prema 2/
code & data
%

* User Page table maps entire VAS

* Resident pages mapped to memory frames

* For all other pages, OS must record where to find them
on disk

10/13/14 cs162 fal4 L19 31

What data structure is required to map
non-resident pages to disk?

* FindBlock(PID, page#) => disk_block

* Like the PT, but purely software
* Where to store it?

e Usually want backing store for resident pages
too.

* Could use hash table (like Inverted PT)

10/13/14 cs162 fal4 L19 32

Provide Backing Store for VAS

disk (huge, TB)

T
S

;-nh-] stack
stack |~ _ heap
N heap

N
\ N
\ \
\ ata
S
3} \
-~

A

A N
A N N
3 \ N
N \, .
N
. €ode)
N N
N \‘

10/13/14

data \
\
\ \
\ LY N\
N
\ Y \‘\
\ AY
N \ \
\ N
\ AY

«. VAS2
kernel
o
stack
e
ML hea
4 P
. data
°
code

AN

VAS 1

PT1

kernel

N
7
Z

memory

NN AL

14 119

user page
frames

user
pagetable

kernel co
& data

33

On page Fault ...

disk (huge, TB) VAS 1 PT 1
M memory
w kernel

B e B L EEEEE ¢
E stack stack \
. e
stack | heap | T / user page
i s— / frames
] heap N \\\ ______________________
Y. data 5
y e VAS 2 PI?
dat \‘code\\ Voo T - user
w\\ / pagetable
NS h kernel L/
NN stack E‘e(rjnel co
RN - - ata
* i
1\ heap active process & PT
I /
. data
o
code /

34

On page Fault ... find & start load

disk (huge, TB)

T
S

10/13/14

VAS 1

PT1

kernel

AN

| stack
StaCk \\ . heap ~~~~~~~~~~~~~~~~~~~~~
o eap |
p aald
N \\ \\ \\ ‘k<-—-—~V—-A-$--2
data . code [
w \:;\\ kernel
\\\ \\\ ‘ ’
stack
e
N \“ hea
L P
data
°
code

N\ /

memory

A

14 119

user page
frames

user
pagetable

kernel co
& data

active process & PT

35

On page Fault ... schedule otherPor T

N/
/
H7
R
-

7
8
%

2) 4
d‘e

disk (huge, TB) VAS 1 PT 1
m memory
w kernel

R T —— q
ot stack stack . 74
stack heap | h e Tes. / user page
o ' 2 T b / | frames
| heap e |
P VAS 2 S ad
NN N user
data . code) - etablc
_// kernel L/ Pag
1 stack kernel co
== - & data
& heap P active process & PT

10/13/14

AN

36

On page Fault ... update PTE

disk (huge, TB)

T
S

10/13/14

VAS 1

PT1

kernel

AN

- stack
stack heap | T
'_'vn h b\ J . S S
ea N N N 000 TTTTTeeeea
P aata
|8 AN \\\ Akq.____/__A_S 2
data 1. code i
\\\\\\\\ﬁ______L%/lq//r‘y\ kernel
\\\ \\\ \ ’
stack
e
ML hea
H P
. data
°
code

memory

A

N\ /

4119

user page
frames

user
pagetable

kernel co
& data

active process & PT

37

Eventually reschedule faulting thread

disk (huge, TB)

i

stack |~ _ heap

heap || \

10/13/14

[stack | >/é

VAS 1 PT1

memory

kernel

N
AY
\ \ \
\ N
3 . N
N
data r A
\ N
3 S ‘\
< N
\ N \
N
\ 3 I
3 \
\
\ \ !
\ \
\ AY

Vi o o - - - -

AN

|
¥
AN
N\

14 119

user page
frames

user
pagetable

kernel co
& data

active process & PT

38

Where does the OS get the frame?

* Keeps a free list
* Unix runs a “reaper” if memory gets too full
* As a last resort, evict a dirty page first

10/13/14 cs162 fal4 L19 39

How many frames per process?

* Like thread scheduling, need to “schedule”
memory resources

— allocation of frames per process
e utilization? fairness? priority?

— allocation of disk paging bandwith

10/13/14 cs162 fal4 L19 40

Historical Perspective

 Mainframes and minicomputers (servers) were
“always paging”
— memory was limited
— processor rates <> disk xfer rates were much closer
* When overloaded would THRASH
— with good OS design still made progress
* Modern systems hardly every page
— primarily a safety net + lots of untouched “stuff”

— plus all the other advantages of managing a VAS

10/13/14 cs162 fal4 L19 41

Summary

10/13/14

Virtual address space for protection, efficient use of
memory, AND multi-programming.

— hardware checks & translates when present
— OS handles EVERYTHING ELSE

Conceptually memory is just a cache for blocks of VAS
that live on disk

— but can never access the disk directly

Address translation provides the basis for sharing
— shared blocks of disk AND shared pages in memory

How else can we use this mechanism?
— sharing ??? @
— disks transfers on demand ???

— accessing objects in blocks using load/store instructions

cs162 fal4 L19 42

