Caching in Operating Systems
Design & Systems Programming

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 17
October 8, 2014

Reading: A&D 9.1-5,7
HW 3 due monday
Proj 1 submit today

In Machine Structures (eg. 61C) ...

* Caching is the key to memory system performance

Main
Processor |€ >t I(\geRrerl\%
Access time = 100ns
100ns
Second Main
Level
Processor € >|Cache |&—>¢ I(\EI)GRWAOI\%
(SRAM)
10ns 100ns

» Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
» HitRate + MissRate = 1

« HitRate = 90% => Average Access Time =19 ns
« HitRate = 99% => Average Access Time = 10.9ns

10/8/14 cs162 fald L# 2

Review: Memory Hierarchy

« Take advantage of the principle of locality to:
— Present as much memory as in the cheapest technology
— Provide access at speed offered by the fastest technology

Processor
Core
—
By r N
0]
Sl 1l |8
® e 3 Secondary
el 121 L | . Secondary Storage
Core — an Storage (Disk)
= — D W Memory (SSD)
Il [~ o > O (DRAM)
Q @) % D O
21 18 Q &3
(©)
s| @] |°
: } 100,000 10,000,000
Speed (ns): 0.3 1 3 10-30 100 (0.1 ms) (10 ms)

Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs

Why Does CaCh'”Q Work?? Locallty.g

Probability
of reference

0 Address Space 2n-1

« Temporal Locality (Locality in Time):

— Keep recently accessed data items closer to processor
« Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

Lower Level

To Processor | Upper Level Memory
Memory

Blk X

From Processor R - BlkY

Design issues for caches

10/8/14

In Computer Architecture we are focused on
cache design as a transparent memory
accelerator

— reduce average MAT (latency), increase BW
implemented directly in hardware

Issues:

— cache size

— block size

— associativity (direct mapped, set assoc, fully assoc)
— placement, replacement

— number of levels of caches

trade-offs among all of these

cs162 fald L#

Review: Direct-Mapped Cache

= All fields are read as unsigned integers.
* Index
= specifies the cache index (or “row”/block)

= distinguishes betw the addresses that map to the same
location

i ifies which | ithi

CS61C L31 Caches Il (3) Garcia, Spring 2013 © UCB

Caching Terminology

= When reading memory, 3 things can
happen:

= cache hit:
cache block is valid and contains proper
address, so read desired word
cache miss:
nothing in cache in appropriate block, so
fetch from memory
cache miss, block replacement:
wrong data is in cache at appropriate block,
so discard it and fetch desired data from
memory (cache always copy)

1O Dan’s great cache mnemonic

AREA (cache size, B)

H+W) = 9H *
= HEIGHT (# of blocks) (2 = 2

Index
{ J

|
Addr size ’
(usu 32 bits) AREA

HEIGHT)
(# of blocks) cache size,

IT)

CS61C L31 Caches Il (4) Garcia, Spring 2013 © UCB

Cache Terms

Hit rate: fraction of access that hit in the
cache

Miss rate: 1 — Hit rate

Miss penalty: time to replace a block from
lower level in memory hierarchy to cache

Hit time: time to access cache memory
(including tag comparison)

= Abbreviation: “$” = cache (A Berkeley

ol /7, innovation!)

10 / 8 / = 2 csS61CL31 Caches I (7) Garcia, Spring 2013 © UCB | —- 2 cS61C L31 Caches Il (8) Garcia, Spring 2013 © UCB

Direct Mapped Cache

Cache index selects a cache block

“Byte select” selects byte within cache block
— Example: Block Size=32B blocks

Cache tag fully identifies the cached data

Data with same “cache index” shares the same cache entry
— Conflict misses

31 8 4 0
Cache Tag Cache Index Byte Select
I Ex: 0x01
‘ Feo oo Cache Tag _ _ _ Valid Bit _ _Cache Data_ _l ______ [
] Byte 31| - |Bytel |ByteO |
B THEye 63t =~ 18y 33 Byic 32|

@

Hit

Fully Associative Cache

» Fully Associative: Every block can hold any line
— Address does not include a cache index
— Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
— We need N 27-bit comparators
— Still have byte select to choose from within block

31

4

0

|

Cache Tag (27 bits long) I Byte Select
Ex: 0x01
Cache Tag Valid Bit Cache Data \
Byte 31| - |Byte 1
Byte 63 Byte 33

Byte 0

Byte 32

|

11918

Set Associative Cache

* N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

« Example: Two-way set associative cache
— Two tags in the set are compared to input in parallel
— Data is selected based on the tag result

31 8 4 0
Cache Tag Cache Index Byte Select
|
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
A41-t-------1 R S B - E T
I I
Lt e e e —F - F—-———————- - ———fF —————— - =1
I I
_’@ }&sm e—vjux ¢ Selo,/_C ‘

Cache Block

Sources of Cache Misses

Compulsory (cold start): first reference to a block
— “Cold” fact of life: not a whole lot you can do about it
— Note: When running “billions” of instruction, Compulsory Misses are
insignificant
Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size

Conflict (collision):
— Multiple memory locations mapped to same cache location
— Solutions: increase cache size, or increase associativity
Two others:
— Coherence (Invalidation): other process (e.g., I/0) updates memory
— Policy: Due to non-optimal replacement policy

Cache Design Issues

* Organization

— cache size, block size

— 1-way, n-way, associative
* Write Policy

— write-through, write-back
* Replacement policy

— given n-way associativity, which of the n gets replaced
— FIFO, Random, LRU, Clock

* Coherence Policy (multi-processor)
— write-invalidate, write-update

10/8/14 cs162 fald L# 11

Virtual TLB Physical
Address| cached? Address
No Z Memory
SR
l 92090
Translate
(MMU)

Data Read or Write
(untranslated)

« Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but lots

« Each TLB entry is for a whole page of blocks !!!

Where does caching arise in Operating
Systems ?

10/8/14 cs162 fal4 L# 13

Hardware Design Trade-offs

Processor
Core
—
D
sl gl |8 .
(5] S > Secondary
o L —) Second ary Sto.rage
e Maln St (DlSk)
Core orage
LS < 2 b (SSD)
2 [=] (S s 9| | | (ORAM)
zl 18] |5] | |27
sl 121 |3
Speed (ns): 0.3 1 3 10-30 100 (1(?(1)'2?3) 10(_.105)?7,\290
Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs
Block Size:

Associativity:

Time Constraint:

Where does caching arise in Operating
Systems ?

* Direct use of caching techniques
— paged virtual memory (mem as cache for disk)
— TLB (cache of PTEs)
— file systems (cache disk blocks in memory)
— DNS (cache hosthame => IP address translations)
— Web proxies (cache recently accessed pages)

* Which pages to keep in memory?

10/8/14 cs162 fald L# 15

Where does caching arise in Operating
Systems ?

* Indirect - dealing with cache effects
* Process scheduling

— which and how many processes are active ?
— large memory footprints versus small ones ?
— priorities ?
* Impact of thread scheduling on cache performance

— rapid interleaving of threads (small quantum) may degrade
cache performance

* increase ave MAT !!!

* Designing operating system data structures for
cache performance

10/8/14 cs162 fald L# 16

Where does caching arise in Operating
Systems ?

* Maintaining the correctness of various caches

e TLB consistent with PT across context
switches ?

e Across updates to the PT ?

e Shared pages mapped into VAS of multiple
processes ?

10/8/14 cs162 fald L# 17

Working Set Model

* As a program executes it transitions through a
sequence of “working sets” consisting of
varying sized subsets of the address space

A

Address

Time

10/8/14 cs162 fald L# 18

Cache Behavior under WS model

1 b 4
% new working set fits |:>
o
e
T —
0 >

Cache Size

 Amortized by fraction of time the WS is active

* Transitions from one WS to the next

e (Capacity, Conflict, Compulsory misses

* Applicable to memory caches and pages. Others ?

10/8/14 cs162 fal4 L# 19

Another model of Locality: Zipf

P access(rank) = 1/rank
20% 1
18% 0.9
0.8
0.7

0.6

0.5

pop a=1 0.4

0.3

Popularity (% accesses)
g
Estimated Hit Rate

—Hit Rate(cache) 0.2

0.1

0% 0
135 7 91113151719212325272931333537394143454749

Rank
* Likelihood of accessing item of rank r is al/r?

* Although rare to access items below the top few, there are so
many that it yields a “heavy tailed” distribution.

e Substantial value from even a tiny cache

e Substantial misses from even a very large one
10/8/14 cs162 fald L# 20

Going into detail on TLB

10/8/14 cs162 fal4 L# 21

What Actually Happens on a TLB Miss&

* Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
 If PTE valid, hardware fills TLB and processor never knows

 If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

« Software traversed Page tables

— On TLB miss, processor receives TLB fault

— Kernel traverses page table to find PTE
 If PTE valid, fills TLB and returns from fault
 If PTE marked as invalid, internally calls Page Fault handler

* Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults
since they use translation for many things

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

— Address Space just changed, so TLB entries no longer valid!

* Options?
— Invalidate TLB: simple but might be expensive
« What if switching frequently between processes?

— Include ProcessID in TLB
 This is an architectural solution: needs hardware

« What if translation tables change?

— For example, to move page from memory to disk or vice
versa...

— Must invalidate TLB entry!
« Otherwise, might think that page is still in memory!

What TLB organization makes sense?

‘— TLB [—>Cache |—> Memory

* Needs to be really fast
— Critical path of memory access
— Seems to argue for Direct Mapped or Low Associativity

 However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high!
— This argues that cost of Conflict (Miss Time) is much higher
than slightly increased cost of access (Hit Time)
» Thrashing: continuous conflicts between accesses

— What if use low order bits of page as index into TLB?
« First page of code, data, stack may map to same entry
* Need 3-way associativity at least?

— What if use high order bits as index?
« TLB mostly unused for small programs

TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

* TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

* What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”
* When does TLB lookup occur relative to memory cache
access?
—Before memory cache lookup?
—In parallel with memory cache lookup?

Reducing translation time further

« As described, TLB lookup is in serial with cache lookup:

Virtual Address

10
\V page no. offset

TLB Lookup

/
/,
A
/

|~ Access’
V i Rights ; PA
/ !

P page no. offset
10

Physical Address

« Machines with TLBs go one step further: they overlap TLB lookup
with cache access.

— Works because offset available early

Overlapping TLB & Cache Access (1/2)

« Main idea:

— Offset in virtual address exactly covers the
“cache index” and “byte select”

— Thus can select the cached byte(s) in parallel to
perform address translation

virtual address | Virtual Page # | Offset |

physical address | tag/page # | index | byte |

Overlapping TLB & Cache Access (1/2)@

* Here is how this might work with a 4K cache:

assoc
lookup .
32 | TLB : ‘ ‘ HEEX—1 4K Cache 1K
20 10 2 4 bytes—
page # disp |00
Hit/ |
Miss w\ /
oA @ PA Data Hit/
! } Miss

Putting Everything Together: Address Translation /&

Virtual Address:

11ng 2 inc Physical
SN R Memory:

PageTablePtr AN\sic -

Page Table
(15t level)

Page Table
(2 level)

Putting Everything Together: TLB

Virtual Address:

Ttua Ttua Physical

lP1 indext P2 in xl Memory:

Physic ress:

sica
P 3 #

TLB:

Putting Everything Together: Cache

Physical
Memory:

