
CS162 - Operating Systems and 
Systems Programming 
 
 
Address Translation => Paging"

David E. Culler!
http://cs162.eecs.berkeley.edu/!

Lecture #15!
Oct 3, 2014!

!
Reading:	
 A&D	
 8.1-­‐2,	
 8.3.1.	
 9.7	

HW	
 3	
 out	
 (due	
 10/13)	

Proj	
 1	
 Final	
 10/8,	
 10/10	

15.2!10/3/14! CS162 ! ©UCB Fa14!

Virtual Memory Concepts"
•  Segmentation!

– virtual addressing scheme constructed as a collection of
variable sized objects!

»  big objects (code, static data, heap, stack)!
»  smaller objects (???)!

– addresses of the form <seg id><offset>!
– are translated into!

»  a physical memory address (holding the data),!
»  an address translation fault, or!
»  a violation (seg fault) due to range or mode!

– by indexing into a segment table for STE!
»  base : bounds : access bits!

– or through segment registers (ala x86)!

15.3!10/3/14! CS162 ! ©UCB Fa14!

Virtual Memory Concepts"
•  Segmentation!

– virtual addressing scheme constructed as a collection of
variable sized objects!

•  Paging!
– virtual addressing scheme in which a flat address space

is broken into fixed size chunks!
– addresses are of the form <page#><offset>!

»  no particular semantic content!
– are translated into!

»  a physical memory address (holding the data),!
»  an address translation fault (page fault), or!
»  a violation (seg fault) due to range or mode!

– by indexing into a page table for PTE!
»  frame # : access bits!

15.4!10/3/14! CS162 ! ©UCB Fa14!

Where does a process live when it is
not in memory?"

15.5!10/3/14! CS162 ! ©UCB Fa14!

Virtual-Physical Address Translation"
virtual address!

instruction!

physical address!

fault!

Process! Memory!

address
translation!
mechanism!

Disk!

Operating System!

protection fault!

not present!

15.6!10/3/14! CS162 ! ©UCB Fa14!

What Mechanism for Translation?"
•  Segmentation!

instruction!

fault!

address
translation!
mechanism! variable!

length !
segment!offset!

15.7!10/3/14! CS162 ! ©UCB Fa14!

What Mechanism for Translation?"
•  Segmentation!

!
•  Paging!

instruction!

fault!

address
translation!
mechanism! variable!

length !
segment!offset!

instruction!

fault!

address
translation!
mechanism! fixed!

length!
page !

15.8!10/3/14! CS162 ! ©UCB Fa14!

Address Translation Structures"
•  Segment table!

– ST[seg#] := | base addr | length | flags |!
– VA(s , o) => PA = ST[s].base + o!

•  Page Table!
– PT[pg#] = | frame # | flags |!
– VA(p : o) => PA = PT[p].frame : o!

•  Paged Segments!
•  2-Level Page Table!
•  Inverted Page Table!

15.9!10/3/14! CS162 ! ©UCB Fa14!

Who does what when ?"
virtual address!

MMU!
PT!

instruction!

physical address!
page#!

frame#!

offset!page fault!

Operating System!

exception!

Page Fault Handler!

load page from disk!

update PT entry!

Process!

scheduler!

retry"

15.10!10/3/14! CS162 ! ©UCB Fa14!

Issues for address translation
mechanism"
•  Fault occurs if any step along the VA => PA translation

cannot complete!
– protection or length violation!
– page or segment not present (non-existent or on disk)!
–  internal lookup steps!

•  Page tables (and segment tables) reside in memory!
– how much memory to they take ?!

•  Virtual address space is (typically) large compared to
physical memory space!

15.11!10/3/14! CS162 ! ©UCB Fa14!

Bit of historical perspective"
•  60’s Multics – Timesharing & Segmentation!
•  70’s Unix on PDP-11 16-bit mini computerer!
•  vax780 32-bit minicomputer => VMS &BSD Unix!

–  32-bit virtual addresses (4 GB), MBs of RAM, ~GB of disk!
•  <1980 personal computer, i8086!

–  16 bit word size!
–  < 640kb physical memory (2^20)!
–  segments provided additional 4 bits!

»  PA20 = SegReg16 * 16 + Addr16!

•  1982 workstation:!
– MC68000 32/16 bit machine, large (24 bit) PA !
–  i80286 16 bit, segment descriptors => seg registers, complex!

•  mid 80s: 32-bit microprocessor arrives!
–  i80386 (segments + paging)!

15.12!10/3/14! CS162 ! ©UCB Fa14!

Admin break"
•  Project!
•  Slip days!
•  Pressure Relief Valve!

15.13!10/3/14! CS162 ! ©UCB Fa14!

15.14!10/3/14! CS162 ! ©UCB Fa14!

Bit of historical perspective"
•  vax780 32-bit minicomputer!

–  few MBs of RAM (PA ~20+ bits), GB disk, 4 GB VA space!
•  16-bit micros!
•  32-bit microprocessor arrives!

–  i80386 (segments + paging), MC680x0!
– RISC, SPARC, MIPS, M88000!
– 10s MBs of RAM, GBs of disk!

•  => Mapping GBs of Virt. Address Space requires MBs of
RAM for page tables!!

– multi-level translation (page the page table !!!)!

15.15!10/3/14! CS162 ! ©UCB Fa14!

Page Table Resouces"

•  MMU hardware performs 2 memory operations
for every inst fetch, load, or store!

•  PT for each process in memory!
–  4 GB VAS / 4 KB page => 1 M PTEs = 4 MB!
–  used sparsely!

instruction!

fault!
user page !

page#:offset!

PT base reg!

memory!

PT for
current
process!

PTE!

page#!

offset!

MMU!

15.16!10/3/14! CS162 ! ©UCB Fa14!

How has OS design choices been
influenced by technological change? "

15.17!10/3/14! CS162 ! ©UCB Fa14!

Physical"
Address:"

Offset"Physical"
Page #"

4KB

two-level page table"
10 bits" 10 bits" 12 bits"

Virtual "
Address:"

Offset"Virtual"
P2 index"

Virtual"
P1 index"

4 bytes"

PageTablePtr"

•  Tree of Page Tables!
•  Tables fixed size (1024 entries)!

– On context-switch: save single
PageTablePtr register!

•  Valid bits on Page Table Entries !
– Don’t need every 2nd-level table!
– Even when exist, 2nd-level tables can

reside on disk if not in use! 4 bytes

15.18!10/3/14! CS162 ! ©UCB Fa14!

stack!

Example: Two-Level Paging"
1111 1111"

stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page1 #! offset"

Physical memory view"

data!

code!

heap!

stack!

0000 0000"
0001 0000"

0101 000"

0111 000"

1110 0000"

page2 #!

111 !
110 null!
101 null!
100 !
011 null!
010 !
001 null!
000 !

11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Page Table"
(level 1)"

1111 0000"

15.19!10/3/14! CS162 ! ©UCB Fa14!

stack!

Example: Two-Level Paging"

stack!

heap!

code!

data!

Virtual memory view"

1001 0000"
(0x90)"

Physical memory view"

data!

code!

heap!

stack!

0000 0000"
0001 0000"

1000 0000"
(0x80)"

1110 0000"

111 !
110 null!
101 null!
100 !
011 null!
010 !
001 null!
000 !

11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Page Table"
(level 1)"

In best case, total size of page tables ≈ number
of pages used by program virtual memory.
Requires two additional memory access!!

15.20!10/3/14! CS162 ! ©UCB Fa14!

Question "
•  How many memory accesses per fetch, load, or store

with 2-level page table?!

•  Where can a page fault occur?!

15.21!10/3/14! CS162 ! ©UCB Fa14!

Multi-level Translation Analysis"
•  Pros:!

– Only need to allocate as many page table entries as we need
for application – size is proportional to usage!

»  In other words, sparse address spaces are easy!
– Easy memory allocation!
– Easy Sharing!

»  Share at segment or page level (need additional reference
counting)!

•  Cons:!
– One pointer per page (typically 4K – 16K pages today)!
– Page tables need to be contiguous!

» However, previous example keeps tables to exactly one page in
size!

– Two (or more, if >2 levels) lookups per reference!
»  Seems very expensive!!

15.22!10/3/14! CS162 ! ©UCB Fa14!

So how do we make address
translation go fast?"

•  Large memories are slow (larger the slower)!
•  Fast memories are small!
•  Really fast storage (registers) are really small!
•  How do we get a small average memory access time

for a LARGE memory?!
•  Harness probability!

–  temporal locality: recently access things likely to be
accessed again soon!

– spatial locality: things near recently accessed thing are
likely to be accessed soon too!

•  AMAT = Phit x Timehit + (1-Phit) x Timemiss !
•  Caching !!!!

15.23!10/3/14! CS162 ! ©UCB Fa14!

Where are we depending on caching
already?"
•  When we load a page from disk to memory (page fault) !
•  we are likely to access it many times while it is resident!

– ~ 10 ms (0.001 s) to load it!
– @ 1 GHz that is 10 million cycles!

•  we are likely to access other items in the page!
– 4KB => much larger pages!

15.24!10/3/14! CS162 ! ©UCB Fa14!

Translation Look Aside Buffer (TLB)"

•  TLB holds mapping (page # -> frame #) for recently
accessed pages!

•  on hit, avoid reading PT!
•  on miss, read PTE into TLB!

virtual address!

MMU!
PT!

instruction! page#!

frame#!

offset!

page fault!

Process!

TLB!

 page # frame #!

memory! memory!

=?!

15.25!10/3/14! CS162 ! ©UCB Fa14!

RAM?"

15.26!10/3/14! CS162 ! ©UCB Fa14!

Costs"

15.27!10/3/14! CS162 ! ©UCB Fa14!

How has OS design choices been
influenced by technological change? "

15.28!10/3/14! CS162 ! ©UCB Fa14!

Bit of historical perspective"
•  vax780 32-bit minicomputer!

–  few MBs of RAM (PA ~20+ bits), GB disk, 4 GB VA space!
•  16-bit micros!
•  mid 80’s 32-bit microprocessor arrives!

–  i80386 (segments + paging)!
– RISC, SPARC, MIPS, M8800!
– 10s MBs of RAM, GBs of disk!

•  => Mapping GBs of Virt. Address Space requires MBs of
RAM for page tables!!

– multi-level translation (page the page table !!!)!
•  ~10 GBs of RAM (!!!) => | VA | < | PA | again!
•  ~2005 64-bit processors arrive!
•  | VA | >> | PA |!

15.29!10/3/14! CS162 ! ©UCB Fa14!

•  With all previous examples (“Forward Page Tables”)!
– Size of page tables is at least as large as amount of virtual

memory allocated to ALL processes!
– Physical memory may be much, much less!

» Much of process’ space may be out on disk or not in use!

!
•  Answer: use a hash table!

– Called an “Inverted Page Table”!
– Size is independent of virtual address space!
– Directly related to amount of phy mem (1 entry per phy page)!
– Very attractive option for 64-bit address spaces (IA64,

PowerPC, UltraSPARC)!
•  Cons: Complexity of managing hash chains in hardware!

Inverted Page Table"

Offset"Virtual"
Page #"

Hash"
Table"

Offset"Physical"
Page #"

Process
ID"

15.30!10/3/14! CS162 ! ©UCB Fa14!

Summary: Inverted Table"
1111 1111"

stack!

heap!

code!

data!

Virtual memory view"

0000 0000"

0100 0000"

1000 0000"

1100 0000"

page #!offset"

Inverted Table"
Hash(procID & virt. page #) = "

phys. page #"1110 0000"

h(11111) ="
h(11110) ="
h(11101) = "
h(11100) = "
h(10010)= "
h(10001)= "
h(10000)="
h(01011)= "
h(01010)= "
h(01001)= "
h(01000)= "
h(00011)= "
h(00010)= "
h(00001)= "
h(00000)= "

stack!

Physical memory view"

data!

code!

heap!

stack!

0000 0000"
0001 0000"

0101 0000"

0111 0000"

1110 0000"

11101"
11100"
10111 "
10110"
10000"
01111"
01110"
01101 "
01100"
01011"
01010 "
00101 "
00100 "
00011 "
00010"

1011 0000"

Total size of page table ≈ number of pages
used by program in physical memory.

Hash more complex!

15.31!10/3/14! CS162 ! ©UCB Fa14!

Address Translation Comparison"
Advantages" Disadvantages"

Segmentation! Fast context
switching: Segment
mapping
maintained by CPU !

External fragmentation!

Paging
(single-level
page)!

No external
fragmentation, fast
easy allocation!

Large table size ~ virtual
memory!
Internal fragmentation!

Paged
segmentation!

Table size ~ # of
pages in virtual
memory, fast easy
allocation !

Multiple memory
references per page
access !Two-level

pages!
Inverted Table! Table size ~ # of

pages in physical
memory!

Hash function more
complex!
Aliasing!

15.32!10/3/14! CS162 ! ©UCB Fa14!

Summary of Translation"
•  Memory is a resource that must be multiplexed!

– Controlled Overlap: only shared when appropriate!
–  Translation: Change virtual addresses into physical addresses!
–  Protection: Prevent unauthorized sharing of resources!

•  Simple Protection through segmentation!
–  Base + Limit registers restrict memory accessible to user!
– Can be used to translate as well!

•  Page Tables!
– Memory divided into fixed-sized chunks of memory!
– Offset of virtual address same as physical address!

•  Multi-Level Tables!
–  Virtual address mapped to series of tables!
–  Permit sparse population of address space!

•  Inverted page table: size of page table related to physical memory
size!

15.33!10/3/14! CS162 ! ©UCB Fa14!

Segments vs Pages"
•  Segments reflects a design philosophy that hardware

capability should closely match software structure.!
– object oriented program => hardware protection of objects =>

OS management of object placement in the storage hierarchy!
•  Challenge of segment size!

–  large segments => easy translation, memory allocation hard!
– small segments => translation overhead!
⇒ code, data, stack, heap, shared library (just a few)!

•  Main value is sharing!
–  in a flat address space, where does a shared library go?!

•  Segments don’t match programming languages well!
– what is the structure of a pointer? seg:offest vs addr!
–  is it unique?!

•  Large flat address space is simpler & empty space
facilitates sharing !

