
CS162 - Operating Systems and 
Systems Programming 
 
 
Address Translation"

David E. Culler!
http://cs162.eecs.berkeley.edu/!

Lecture #14!
Oct 1, 2014!

!
Reading:	
 A&D	
 2.7,	
 8.1-­‐2	

HW	
 3	
 deferred	

Proj	
 1	
 CP	
 #2	
 10/2	

14.2!10/1/14! CS162 ©UCB Fa14!

way back when …"

Key OS Concept: Address Space
•  Program operates in an address space that is

distinct from the physical memory space of the
machine

9/3/14 UCB CS162 Fa14 L2! 16

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

si
ca

l a
dd

re
ss

”

14.3!10/1/14! CS162 ©UCB Fa14!

Objective"
•  Dive deeper into the concepts and mechanisms of

address translation!
•  Enabler of many key aspects of operating systems!

– Protection!
– Multi-programming!
–  Isolation!
– Memory resource management!
–  I/O efficiency!
– Sharing!
–  Inter-process communication!
– Debugging!
– Demand paging!

•  Today: Linking, Segmentation, Paged Virtual Address !

14.4!10/1/14! CS162 ©UCB Fa14!

Recall: address translation is key to
protection"

4

OS Basics: Loading

8/31/14 UCB CS162 Fa14 L1! 18

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

14.5!10/1/14! CS162 ©UCB Fa14!

Recall: Loading and Managing Memory"

OS Bottom Line: Run Programs

•  Load instruction and data segments
of executable file into memory

•  Create stack and heap
•  “Transfer control to it”
•  Provide services to it
•  While protecting OS and it

9/3/14 UCB CS162 Fa14 L2! 6

int main() !
{ … ;!
 }!

ed
ito

r

co
m

pi
le

r

Program Source
Executable

foo.c a.out

Lo
ad

 &

E
xe

cu
te

0x000…

0xFFF…

instructions

data

instructions

data

heap

stack

Memory

Processor

registers

PC:

OS

14.6!10/1/14! CS162 ©UCB Fa14!

Recall Further: L2"

A simple address translation: B&B

•  Can the pgm touch OS?
•  Can it touch other pgms?

9/3/14 UCB CS162 Fa14 L2! 17

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

14.7!10/1/14! CS162 ©UCB Fa14!

Question"
•  What is the cost of a process fork?!

•  Depending on what?!

14.8!10/1/14! CS162 ©UCB Fa14!

Virtualizing Resources"

•  Physical Reality: Processes/Threads share the same hardware!
– Need to multiplex CPU (Scheduling, Concurrency,

Synchronization)!
– Need to multiplex use of Memory (Today)!

•  Why worry about memory multiplexing?!
– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)!
– Consequently, cannot just let different processes use the same

memory!
– Generally don’t want different processes access to each other’s

memory (protection)!

14.9!10/1/14! CS162 ©UCB Fa14!

Important Aspects of Memory Multiplexing"

•  Controlled overlap:!
– Processes should not collide in physical memory!
– Conversely, would like the ability to share memory when desired

(for communication)!

•  Protection:!
– Prevent access to private memory of other processes!

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc.)!

»  Kernel data protected from User programs!

•  Translation: !
– Ability to translate accesses from one address space (virtual) to

a different one (physical)!
– When translation exists, process uses virtual addresses,

physical memory uses physical addresses!
!

14.10!10/1/14! CS162 ©UCB Fa14!

Diving down to the instruction level"

14.11!10/1/14! CS162 ©UCB Fa14!

Binding of Instructions & Data to Memory"

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory!

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical addresses!

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

14.12!10/1/14! CS162 ©UCB Fa14!

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory! Physical addresses!
8C2000C0
0C000340
2021FFFF
14200242

0x0900"

0xFFFF"

0x0300"

0x0000"

00000020

Physical !
Memory!

Binding of Instructions & Data to
Memory"

14.13!10/1/14! CS162 ©UCB Fa14!

Binding of Instructions and Data to
Memory"

0x300 00000020
 … …
0x900 8C2000C0
0x904 0C000280
0x908 2021FFFF
0x90C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory! Physical addresses!
0x0900"

0xFFFF"

0x0300"

0x0000"

Physical!
Memory!

?!
App X!

Need address translation!!

14.14!10/1/14! CS162 ©UCB Fa14!

Binding of Instructions and Data to
Memory"

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory! Processor view of memory!
0x0900"

0xFFFF"

0x0300"

0x0000"
Memory!

App X!

8C2004C0
0C000680
2021FFFF
14200642

00000020 0x1300"

0x1900"

•  One of many possible translations!!
•  Where does translation take place?!

Compile time, Link/Load time, or Execution time?!
!

14.15!10/1/14! CS162 ©UCB Fa14!

Multi-step Processing of a Program for Execution"
•  Preparation of a program for execution

involves components at:!
– Compile time (i.e., “gcc”)!
– Link/Load time (UNIX “ld” does link)!
– Execution time (e.g., dynamic libs)!

•  Addresses can be bound to final
values anywhere in this path!

– Depends on hardware support !
– Also depends on operating system!

•  Dynamic Libraries!
– Linking postponed until execution!
– Small piece of code, stub, used to

locate appropriate memory-resident
library routine!

– Stub replaces itself with the address of
the routine, and executes routine!

14.16!10/1/14! CS162 ©UCB Fa14!

Exercise curiousity"
•  HW1!
•  vagrant!
•  gcc –g –o io.o io.c!
•  objdump –x io.o!
•  objdump –d io.o!
•  gcc –g –o shell shell.o parse.o io.o!
•  gdb shell!

–  disa freadln!
–  disa fgets!
–  b freadln!
–  info registers!
–  info scope!
–  bt!
–  frame, info frame!

14.17!10/1/14! CS162 ©UCB Fa14!

Example of General Address Translation"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

14.18!10/1/14! CS162 ©UCB Fa14!

Two Views of Memory"

•  Address Space:!
– All the addresses and state a process can touch!
– Each process and kernel has different address space!

•  Consequently, two views of memory:!
– View from the CPU (what program sees, virtual memory)!
– View from memory (physical memory)!
– Translation box (MMU) converts between the two views!

•  Translation essential to implementing protection!
–  If task A cannot even gain access to task B’s data, no way for A

to adversely affect B!
•  With translation, every program can be linked/loaded into

same region of user address space!

Physical"
Addresses"CPU" MMU"

Virtual"
Addresses"

Untranslated read or write"

14.19!10/1/14! CS162 ©UCB Fa14!

Uniprogramming"
•  Uniprogramming (no Translation or Protection)!

– Application always runs at same place in physical memory
since only one application at a time!

– Application can access any physical address!

– Application given illusion of dedicated machine by giving it
reality of a dedicated machine!

0x00000000"

0xFFFFFFFF"

Application"

Operating"
System"

Va
lid

 3
2-

bi
t"

A
dd

re
ss

es
"

14.20!10/1/14! CS162 ©UCB Fa14!

Multiprogramming (primitive stage)"
•  Multiprogramming without Translation or Protection!

– Must somehow prevent address overlap between threads!

– Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)!

»  Everything adjusted to memory location of program!
»  Translation done by a linker-loader (relocation)!
» Common in early days (… till Windows 3.x, 95?)!

•  With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000"

14.21!10/1/14! CS162 ©UCB Fa14!

Multiprogramming (Version with Protection)"
•  Can we protect programs from each other without

translation?!

– Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area!

»  If user tries to access an illegal address, cause an error!
– During switch, kernel loads new base/limit from PCB (Process

Control Block)!
» User not allowed to change base/limit registers!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000" BaseAddr=0x20000"

LimitAddr=0x10000"

14.22!10/1/14! CS162 ©UCB Fa14!

Simple Base and Bounds (CRAY-1)"

•  Could use base/limit for dynamic address translation –
translation happens at execution:!

– Alter address of every load/store by adding “base”!
– Generate error if address bigger than limit!

•  This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0!

– Program gets continuous region of memory!
– Addresses within program do not have to be relocated when

program placed in different region of DRAM!

DRAM"

<?"
+"

Base"

Limit"

CPU"

Virtual"
Address"

Physical"
Address"

No: Error!"

14.23!10/1/14! CS162 ©UCB Fa14!

Issues with Simple B&B Method"

•  Fragmentation problem!
– Not every process is the same size!
– Over time, memory space becomes fragmented!

•  Hard to do inter-process sharing!
– Want to share code segments when possible!
– Want to share memory between processes!
– Helped by providing multiple segments per process!

process 6!

process 5!

process 2!

OS!

process 6!

process 5!

OS!

process 6!

process 5!

OS!

process 9!

process 6!

process 9!

OS!

process 10!

!

process 11!
!

14.24!10/1/14! CS162 ©UCB Fa14!

More Flexible Segmentation"

•  Logical View: multiple separate segments!
– Typical: Code, Data, Stack!
– Others: memory sharing, etc!

•  Each segment is given region of contiguous memory!
– Has a base and limit!
– Can reside anywhere in physical memory!

1!

3!

2!

4!

user view of!
memory space !

1!
4!

2!

3!

physical !
memory space!

1!

2!

14.25!10/1/14! CS162 ©UCB Fa14!

Implementation of Multi-Segment Model"

•  Segment map resides in processor!
– Segment number mapped into base/limit pair!
– Base added to offset to generate physical address!
– Error check catches offset out of range!

•  As many chunks of physical memory as entries!
– Segment addressed by portion of virtual address!
– However, could be included in instruction instead:!

»  x86 Example: mov [es:bx],ax. !
•  What is “V/N” (valid / not valid)?!

– Can mark segments as invalid; requires check as well!

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Offset"Seg #"Virtual"
Address"

Base2" Limit2" V"

+" Physical"
Address"

>" Error"offset"

Check Valid"

Access"
Error"

14.26!10/1/14! CS162 ©UCB Fa14!

Example: Four Segments (16 bit addresses)"
Seg ID #" Base" Limit"

0 (code)" 0x4000" 0x0800"
1 (data)" 0x4800" 0x1400"
2 (shared)" 0xF000" 0x1000"
3 (stack)" 0x0000" 0x3000"

Offset"Seg"
0"14"13"15"

0x4000"

0x0000"

0x8000"

0xC000"

Virtual"
Address Space"

Virtual Address Format"

0x0000"

0x4800"
0x5C00"

0x4000"

0xF000"

Physical"
Address Space"

Space for"
Other Apps"

Shared with"
Other Apps"

Might "
be shared"

SegID = 0"

SegID = 1"

14.27!10/1/14! CS162 ©UCB Fa14!

Administrative Break"

14.28!10/1/14! CS162 ©UCB Fa14!

How do we run more programs than
fit in memory ?"

14.29!10/1/14! CS162 ©UCB Fa14!

Schematic View of “Swapping”"
•  Q: What if not all processes fit in memory?!
•  A: Swapping: Extreme form of Context Switch!

–  In order to make room for next process, some or all of the
previous process is moved to disk!

– This greatly increases the cost of context-switching!

•  Desirable alternative?!
– Some way to keep only active portions of a process in memory

at any one time!
– Need finer granularity control over physical memory!

14.30!10/1/14! CS162 ©UCB Fa14!

Problems with Segmentation"

•  Must fit variable-sized chunks into physical memory!

•  May move processes multiple times to fit everything!

•  Limited options for swapping to disk!

•  Fragmentation: wasted space!
– External: free gaps between allocated chunks!
–  Internal: don’t need all memory within allocated chunks!

14.31!10/1/14! CS162 ©UCB Fa14!

Paging: Physical Memory in Fixed Size Chunks"

•  Solution to fragmentation from segments?!
– Allocate physical memory in fixed size chunks (“pages”)!
– Every chunk of physical memory is equivalent!

» Can use simple vector of bits to handle allocation: 
!00110001110001101 … 110010!

» Each bit represents page of physical memory 
!1⇒allocated, 0⇒free!

!
•  Should pages be as big as our previous segments?!

– No: Can lead to lots of internal fragmentation!
» Typically have small pages (1K-16K)!

– Consequently: need multiple pages/segment!

14.32!10/1/14! CS162 ©UCB Fa14!

Physical Address"
Offset"

How to Implement Paging?"

•  Page	
 Table	
 (One	
 per	
 process)	

– Resides	
 in	
 physical	
 memory	

–  Contains	
 physical	
 page	
 and	
 permission	
 for	
 each	
 virtual	
 page	

»  Permissions	
 include:	
 Valid	
 bits,	
 Read,	
 Write,	
 etc	

•  Virtual	
 address	
 mapping	

– Offset	
 from	
 Virtual	
 address	
 copied	
 to	
 Physical	
 Address	

»  Example:	
 10	
 bit	
 offset	
 ⇒	
 1024-­‐byte	
 pages	

– Virtual	
 page	
 #	
 is	
 all	
 remaining	
 bits	

»  Example	
 for	
 32-­‐bits:	
 32-­‐10	
 =	
 22	
 bits,	
 i.e.	
 4	
 million	
 entries	

»  Physical	
 page	
 #	
 copied	
 from	
 table	
 into	
 physical	
 address	

–  Check	
 Page	
 Table	
 bounds	
 and	
 permissions	

Offset"Virtual"
Page #"Virtual Address:"

Access"
Error"

>"PageTableSize"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access"
Error"

Physical"
Page #"

14.33!10/1/14! CS162 ©UCB Fa14!

PageTablePtrB" page #0"
page #1"
page #2"
page #3"

page #5"

V,R"
N"
V,R,W"
N"

page #4" V,R"
V,R,W"

page #4" V,R"

What about Sharing?"
Offset"Virtual"

Page #"Virtual Address"
(Process A):"

PageTablePtrA" page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"Virtual"
Page #"Virtual Address"

(Process B):"

Shared"
Page"

This physical page"
appears in address"
space of both processes"

page #2" V,R,W"

14.34!10/1/14! CS162 ©UCB Fa14!

Simple Page Table Example"

a"
b"
c"
d"
e"
f"
g"
h"
i"
j"
k"
l"

0x00"

0x04"

0x08"

Virtual"
Memory"

0x00"

i"
j"
k"
l"

0x04"

0x08"

e"
f"
g"
h"

0x0C"

a"
b"
c"
d"

0x10"

Physical"
Memory"

Example (4 byte pages)"

4"
3"
1"

Page"
Table"

0"

1"

2"

0000 0000"

0001 0000"

0000 0100" 0000 1100"

0000 1000"

0000 0100"
0x06?"

0000 0110" 0000 1110"

0x0E!"
0x09?"

0000 1001" 0000 0101"

0x05!"

14.35!10/1/14! CS162 ©UCB Fa14!

Page Table Discussion"
•  What needs to be switched on a context

switch? !
– Page table pointer and limit!

•  Analysis!
– Pros!

»  Simple memory allocation!
»  Easy to Share!

– Con: What if address space is sparse?!
»  E.g. on UNIX, code starts at 0, stack starts

at (231-1).!
» With 1K pages, need 2 million page table

entries!!
– Con: What if table really big?!

» Not all pages used all the time ⇒ would be
nice to have working set of page table in
memory!

•  How about combining paging and
segmentation?!

14.36!10/1/14! CS162 ©UCB Fa14!

E.g., Linux 32-bit"

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

14.37!10/1/14! CS162 ©UCB Fa14!

Summary"

•  Memory is a resource that must be multiplexed!
– Controlled Overlap: only shared when appropriate!
– Translation: Change virtual addresses into physical addresses!
– Protection: Prevent unauthorized sharing of resources!

•  Simple Protection through segmentation!
– Base + Limit registers restrict memory accessible to user!
– Can be used to translate as well!

•  Page Tables!
– Memory divided into fixed-sized chunks of memory!
– Offset of virtual address same as physical address!

