CS162 - Operating Systems and
Systems Programming

Address Translation

David E. Culler
http://cs162.eecs.berkeley.edu/
Lecture #14
Oct 1, 2014 Reading: A&D 2.7, 8.1-2

HW 3 deferred
Proj1 CP #2 10/2

10/1/14

way back when ...

Key OS Concept: Address Space

 Program operates in an address space that is
distinct from the physical memory space of the

machine . 5

Processor
translator

UCB CS162 Fa14 L2

0x000...

OxFFF...

CS162 ©UCB Fal4

14.2

Objective
Dive deeper into the concepts and mechanisms of

address translation
- Enabler of many key aspects of operating systems

— Protection
— Multi-programming o 8 gy%%
— Isolation &
) %)
— Memory resource management g ONCeD,. G
— 1/0O efficiency _ % D intro \& g
— Sharing 2 : q
L %, “0 ¥
— Inter-process communication 0 ° foues &@?
:) S
— Debugging 8 Gygeyed

— Demand paging
Today: Linking, Segmentation, Paged Virtual Address
10/1/14 CS162 ©UCB Fail4 14.3

Recall: address translation is key to
protection

OS Basics: Loading

Threads
Address Spaces Windows
Processes Files Sockets
Software OS Hardware Virtualization |
ISA
Hardware Memory

Bounda

\ Ll
[Processor/ i Protection

L)

e

<> L
?@ Displays
v Inputs

(H Y WY FPr.Y. W W N
Uuvb Uollca T als L1

10/1/14 CS162 ©UCB Fal4 14.4

Recall: Loading and Managing Memory

OS Bottom Line: Run Programs

Memory
Executable 0x000...

Program Source

nstructions

nstructions|

Load &
Execute

data

C\ﬁ |
| — data heap l

editor
lcompiler

foo.c a.out stack T

* Load instruction and data segments
of executable file into memory 0S

» Create stack and heap

» “Transfer control to it”

* Provide services to it

* While protecting OS and it

UCB CS162 Fa14 L2

OxFFF...

PC:

registers

Processor

10/1/14 CS162 ©UCB Fal4 14.5

10/1/14

Recall Further: L2

A simple address translation: B&B

code

> Static Data

heap

P 9

stack

Program
address

0000...

Base Address

1000...

Bound

0100...

« Can the pgm touch OS?
« Can it touch other pgms?

code
Static Data
hea
P \ 4
A
stack
code
¥ Static Data
heap
v
A
stack

UCB CS162 Fa14 L2

0000...

1000...

1100...

FFFF...

CS162 ©UCB Fa14

14.6

Question

- What is the cost of a process fork?

« Depending on what?

10/1/14 CS162 ©UCB Fal4 14.7

Virtualizing Resources

* Physical Reality: Processes/Threads share the same hardware

— Need to multiplex CPU (Scheduling, Concurrency,
Synchronization)

— Need to multiplex use of Memory (Today)

* Why worry about memory multiplexing?

— The complete working state of a process and/or kernel is defined
by its data in memory (and registers)

— Consequently, cannot just let different processes use the same
memory

— Generally don’t want different processes access to each other’s

memory (protection)
10/1/14 CS162 ©UCB Fai14 14.8

$
5=/

Important Aspects of Memory Multiplexing{ .2,

- Controlled overlap:
— Processes should not collide in physical memory

— Conversely, would like the ability to share memory when desired
(for communication)

* Protection:

— Prevent access to private memory of other processes

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc.)

» Kernel data protected from User programs

* Translation:

— Ability to translate accesses from one address space (virtual) to
a different one (physical)

— When translation exists, process uses virtual addresses,
physical memory uses physical addresses

10/1/14 CS162 ©UCB Fa14 14.9

10/1/14

Diving down to the instruction level

CS162 ©UCB Fal4

"

[CAUTION]

HARD HATS, SAFETY
GLASSES, SAFETY SHOES
REQUIRED
BEYOND THIS POINT

14.10

Binding of Instructions & Data to Memory

Assume 4byte words
0x300 = 4 * 0x0CO
Process view of memory Physi| 0x0CO = 0000 1100 0000
//’ *\\ 0x300 = 0011 0000 0000
datal: dw 32 0x030‘0—0\/0
start: 1w rl,0(datal) Oxogzg\;gggsbco
Jal = checkit E 0x0904 0CO0
~OCPHENAGC IR IV I 0x0908 2021FFFF

bnz rl, loop 0x090C 14200242

Qeckit: / Ox

10/1/14 CS162 ©UCB Fai14 14.11

Binding of Instructions & Data to
Memory

0x0000

0x0300| 00000020

Process view of memory Physical addresses
fata1: aw 32 "\ ox0300 00000020 | X900 8C2000C0
. 0C000340
start: 1w rl,0(datal) 0x0900 8C2000C0 2021FFFF
loop: addi rl, ri1, -1 0x0908 2021FFFF
bnz rl, loop 0x090C 14200242

Qeckit: / Ox

OXFFFF

10/1/14 CS162 ©UCB Fai14 14.12

Binding of Instructions and Data to

Memory

Process view of memory

é;Lalz dw 32
start: lw

addi ri,

rl, 0 (datal)
jal checkit

L B

bnz rl, r0, loop

~

/

Physical addresses

0x300
0x900
0x904

0x908
0x90C

0x0A00

00000020

8C2000CO
0C000280
2021FFFF
14200242

Need address translation!

10/1/14

CS162 ©UCB Fa14

0x0000

0x0300

0x0900

I?

)

OXFFFF

App X

14.13

Binding of Instructions and Data to
Memory

0x0000

0x0300
Process view of memory Processor view of memory

App X
étal‘ dw 32 \ 0x1300 00000020 @ 0X0900 PP

jal checkit E 0x1904 0COO 0x1300[00000020
loop: addi ril, ril, -1 0x1908 2021FFFF

bnz rl, r0, loop 0x190C 14200642
0x1900| 8C2004C0

Qeckit; Yy, Ox 0C000680
2021FFFF
« One of many possible translations! 14200642

 Where does translation take place? oxFFFF
Compile time, Link/Load time, or Execution time?

10/1/14 CS162 ©UCB Fai14 14.14

start: 1w rl,0(datal) : 0x1§oo 8c2504co

Multi-step Processing of a Program for Executia,,

* Preparation of a program for execution
Involves components at:

— Compile time (i.e., “gcc”)
— Link/Load time (UNIX “1d” does link)
— Execution time (e.g., dynamic libs)

- Addresses can be bound to final
values anywhere in this path

— Depends on hardware support
— Also depends on operating system

- Dynamic Libraries
— Linking postponed until execution

— Small piece of code, stub, used to
locate appropriate memory-resident
library routine

— Stub replaces itself with the address of

the routine, and executes routine

10/1/14 CS162 ©UCB Fal4

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

Y

in-memory
binary
memory
image

compile
time

L load
time

executior
> time (run
time)

Exercise curiousity

- HW1

* vagrant
* gcc—g—0io.0i0.C
« objdump —x io.o
« objdump —d i0.0
» gcc —g —o shell shell.o parse.o io.o
« gdb shell
— disa freadIn
— disa fgets
— b freadin
— info registers
— info scope
— bt
— frame, info frame

10/1/14 CS162 ©UCB Fa14 14.16

Example of General Address Translation

Prog 2

Virtual Virtual
Address Address
Space 1 Space 2

Translation Map 1 Translation Map 2

Physical Address Space

10/1/14 CS162 ©UCB Fal4 14.17

Two Views of Memory

Virtual
Addresses

Physical ¢
Addresses %

Untranslated read or write

Address Space:

— All the addresses and state a process can touch

— Each process and kernel has different address space
Consequently, two views of memory:

— View from the CPU (what program sees, virtual memory)

— View from memory (physical memory)

— Translation box (MMU) converts between the two views
Translation essential to implementing protection

— If task A cannot even gain access to task B’s data, no way for A
to adversely affect B

With translation, every program can be linked/loaded into
same region of user address space

10/1/14 CS162 ©UCB Fa14 14.18

Uniprogramming

« Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory
since only one application at a time

— Application can access any physical address

OxFFFFFFFF
Operating
System —
S
S <
Application
0x00000000

— Application given illusion of dedicated machine by giving it
reality of a dedicated machine

10/1/14 CS162 ©UCB Fa14 14.19

Multiprogramming (primitive stage)
- Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating

System Starting MS-DOS...

C:\>

Application2 0x00020000

Applicationi

0x00000000

— Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Gommon in early days (... till Windows 3.x, 957?)

 With this solution, no protection: bugs in any program can

cause other programs to crash or even the OS
10/1/14 CS162 ©UCB Fai14 14.20

Multiprogramming (Version with Protectiqfl

- Can we protect programs from each other without
translation?

OxFFFFFFFF
Operating
System

« | LimitAddr=0x10000 |

| _
Application2 | 0x00020000 * | BaseAddr=0x20000 |

Application1
0x00000000

— Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area
» |f user tries to access an illegal address, cause an error

— During switch, kernel loads new base/limit from PCB (Process
Control Block)

» User not allowed to change base/limit registers

10/1/14 CS162 ©UCB Fai14 14.21

Simple Base and Bounds (CRAY-1)

_ Base
Virtual

Address

DRAM ‘

‘ CPU

Physical
Address

No: Error!

« Could use base/limit for dynamic address translation —
translation happens at execution:

— Alter address of every load/store by adding “base”
— Generate error if address bigger than limit
* This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0

— Program gets continuous region of memory

— Addresses within program do not have to be relocated when
program placed in different region of DRAM

10/1/14 CS162 ©UCB Fai14 14.22

Issues with Simple B&B Method

process 6

process 5

process 6

process 5

process 6

process 6

process 2

OS

process 5

process 9

process 9

process 10

OS

* Fragmentation problem
— Not every process is the same size
— Over time, memory space becomes fragmented

+ Hard to do inter-process sharing
— Want to share code segments when possible
— Want to share memory between processes

OS

OS

— Helped by providing multiple segments per process

10/1/14

CS162 ©UCB Fa14

process 11

—J

14.23

subroutine

stack

Sqrt

symbol
table

main
program

logical address

1
4
2
3
user view of physical
memory space memory space

 Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc
- Each segment is given region of contiguous memory

— Has a base and limit
— Can reside anywhere | |&p Y ig@l memory

10/1/14

Fald 14.24

Virtual Offset : offset Error
Address Base0| Limit0] V
Base1| Limit1
Base2.l.imi
Base3| Limit3 hysical
Base4| Limit4 | V Address
Base5| Limit5 | N
Base6| Limit6 | N
Base7| Limit7 |V Check Valid
- Segment map resides in processor ’
— Segment number mapped into base/limit pair Access

— Base added to offset to generate physical address Error
— Error check catches offset out of range

- As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» X86 Example: mov [es:bx],ax.

« What is “V/N” (valid / not valid)?
— Can mark segments as invalid; requires check as well

10/1/14 CS162 ©UCB Fai14 14.25

Example: Four Segments (16 bit addresses

- Offset

15 14 13
Virtual Address Format

0x0000

0x4000

0x8000

0xC000

Virtual

SegiD =0

SegID =1

]

Address Space

10/1/14

Seqg ID # Base Limit
0 (code) 0x4000 | 0x0800
1 (data) 0x4800 | 0x1400
2 (shared) | OxF000 | 0x1000
3 (stack) 0x0000 | 0x3000
0x0000
0x4000 Miaht
> 33— Mg
> 0x4800 be shared
0x5C00
Space for
Other Apps
0xF000 Shared with
_ Other Apps
Physical
Address Space

CS162 ©UCB Fa14

14.26

Administrative Break

10/1/14 CS162 ©UCB Fal4 14.27

How do we run more programs than
fit in memory ?

10/1/14 CS162 ©UCB Fal4 14.28

Schematic View of “Swapping”

« Q: What if not all processes fit in memory?

« A: Swapping: Extreme form of Context Switch

—In or_der to make room for next process, some or all of the
previous process is moved to disk

— This greatly increases the cost of context-switching

operating I ——
system
process P,
@ swap out
] process P,
@ swap in
_—]
|
user
Shacs backing store
main memory

« Desirable alternative?

— Some way to keep only active portions of a process in memory
at any one time

1onmtANeed finer granularity contiglQverphysical memory 14.29

Problems with Segmentation

Must fit variable-sized chunks into physical memory

May move processes multiple times to fit everything

Limited options for swapping to disk

Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

10/1/14 CS162 ©UCB Fal4 14.30

Paging: Physical Memory in Fixed Size Chunk

- Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Gan use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents page of physical memory
1=allocated, O=free

- Should pages be as big as our previous segments?
—No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

10/1/14 CS162 ©UCB Fa14 14.31

How to Implement Paging?

Virtual Address: Offset i 1
PageTablePtr _page #0 | V.R
’ Offset
pogefs 1 [bade] |
age #2 | VAW Physical Address

PageTableSize page #3 V,R,WM Check Perm

' page #4 | N | ‘

II-E\ccess page #5 | V,R,W| Access
rror Error

Page Table (One per process)
— Resides in physical memory
— Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc

Virtual address mapping

— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
10/1/14 CS162 ©UCB Fail4 14.32

What about Sharing?

Virtual Address Offset |
(Process A):

PageTablePtrA page #0 |V,R |

Shared
Page

| PageTablePtrB [~

This physical page
appears in address

 page #4 space of both processes
| page #5 | V,R,M

Virtual Address - Offset |

(Process B):
10/1/14 CS162 ©UCB Fai14 14.33

Simple Page Table Example

Example (4 byte pages)

ox00 [a 22200000 0x00 [:
b
: c _) o 0001 00003 gx04 [+
E j— i '
o004 [00000100 o = oooo11o(j | oxos
: f R
: 2 0000 010 il
: 0x067 |9 1| 0x08
: h
: 0x08 |5 00001000‘ Page I 5 oxoc =
: 0x09? |} Table f
. :(g OxOE!
S —> 0x10 Jg—
Virtual 0000 0110 ====> 0000 1110 5
Memory 0000 1001 ===-> 0000 0101 c
Ld_J
Physical
: Memory
10/1/14 CS162 ©UCB Fa14 14.34

Page Table Discussion

 What needs to be switched on a context
switch?
— Page table pointer and limit

« Analysis
— Pros
» Simple memory allocation
» Easy to Share
— Con: What if address space is sparse?
» E.g. on UNIX, code starts at O, stack starts
at (231-1).
» With 1K pages, need 2 million page table
entries!

— Con: What if table really big?

» Not all pages used all the time = would be
nice to have working set of page table in
memory

- How about combining paging and

segmentation?
10/1/14 CS162 ©UCB Fai14 14.35

E.g., Linux 32-bit

1GB

3GB 4<

.

Kernel space
User code CANNOT read from nor write to these addresses,

doing so results in a Segmentation Fau‘];_' 0xCc0000000

== TASK_SIZE
} Random stack offset

Stack (grows down)

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

'I]* brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

0x08048000

(%]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png

10/1/14

CS162 ©UCB Fal4

14.36

Summary

- Memory is a resource that must be multiplexed
— Controlled Overlap: only shared when appropriate
— Translation: Change virtual addresses into physical addresses
— Protection: Prevent unauthorized sharing of resources

- Simple Protection through segmentation
— Base + Limit registers restrict memory accessible to user
— Can be used to translate as well

- Page Tables
— Memory divided into fixed-sized chunks of memory
— Offset of virtual address same as physical address

10/1/14 CS162 ©UCB Fai14 14.37

