Signaling and Hardware Support

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 12
Sept 26, 2014

Reading: A&D 5-5.6
HW 2 due

Proj 1 Design Reviews
Mid Term Monday

Synchronization Mechanisms

Consistency Coordination

* flags
* semaphores

— value, waiter*

— unstructured combination of mutex and
scheduling Two Key Roles

* locks
— state, waiter™®, owner
— coarse uniprocessor implementation
=> fine-grain multiprocessor implementation

e condition variables

— means of conveying scheduling under lock
regime

cs162 fald L10 2

Concurrency Coordination Landscape §

Concurrent Applications

lecture 8

Shared Coordinated Objects

BounYed Queue

Flag Ordered List Dictionary Barrier

Synchronization Variables
ondition Variables Semaphore)

[— Atomic Operations
Interrupt Disable/Enable

Monitors

Test-and-Set

Hardware

xchng
cmp&swap

Interrupts Multiple Processors

Controllers
fetch&inc

LL + SC

A Lock

e Value: FREE (0) or BUSY (1)
« A queue of waiters (threads*) = oy "

-valueis int

— attempting to acquire

 An owner (thread)

cs162 fald L10 4

Incorporate Mutex into shared object®

* Methods on the object provide the
synchronization

— Exactly one consumer will process the line

typedef struct sharedobject {

FILE *rfile;

pthread mutex t solock;

int flag;

int linenum;

char *line;
} so_t;

int waittill(so_t *so, int val) {
while (1) {
pthread mutex lock(&so->solock);
if (so->flag == val)
return 1; /* rtn with object locked */
pthread mutex unlock(&so->solock);

}
}

int release(so t *so) {
return pthread mutex unlock(&so->solock);

}

cs162 fal4d L10

Recall: Multi Consumer

void *producer(void *arg) {
so t *so = arg;
int *ret = malloc(sizeof(int));
FILE *rfile = so->rfile;
int i;
int w = 0;
char *line;

for (i = 0; (line = adline(rfil

waittill(so, 0) ;"

so->linenum = i; /*
so->line = line; /*
so->flag = 1; /*
release(so); /*

fprintf (stdout, "Prod: [%d] %s"
}
waittill(so, 0); /*
so->line = NULL;
so->flag = 1;
printf("Prod: %d lines\n", 1i);
release(so); /* release
*ret = i;
pthread exit(ret);

Coordination

;i) {
grab lock when empty */
update the shared state */
share the line */
mark full */
release the loc */
, i, line);

grab lock when empty */

the loc */

cs162 fald L10

Eliminate the busy-wait?

* Especially painful since looping on lock/unlock
of contended resource

Shared buffer
(of depth 1)

- ﬁ
typedef struct sharedobject { @
FILE *rfile;

pthread mutex t solock;

I Line of text

int flag;
int linenum; int waittill(so t *so, int val) {
char *line; while (1) {

} so_t; pthread mutex lock(&so->solock);

if (so->flag == val)
return 1; /* rtn with object locked */
pthread mutex unlock(&so->solock);

}
}

int release(so t *so) {
return pthread mutex unlock(&so->solock);

}

cs162 fald L10 7

Condition Variables

Wait: atomically release lock and relinquish
processor until signaled

— may have some spurious wakeups too
Signal: wake up a waiter, if any
Broadcast: wake up all waiters, if any

Called only when holding a lock !!!]

cs162 fal4d L10

In the object

typedef struct sharedobject {
FILE *rfile; in case of other wake ups

pthread mutex t solock; i
pthread_cond_t flag_cv; (spurious)
int flag; ////

int linenum; i)) . . .
. int waittil ot *so, 1nt val, int tid) {
char *line;

} so t; pthread-mutex lock(&so->solock);

— whilé® (so->flag != val)

pthread cond wait(&so->flag cv, &so->solock);
/ré%urn 1;
/ }

release and int release(so t *so, int val, int tid) {
regain so->flag = val;

. pthread cond signal(&so->flag cv);
atomically - = =

return pthread mutex unlock(&so->solock);

}

int release exit(so_t *so, int tid) {
pthread cond signal(&so->flag cv);
return pthread mutex unlock(&so->solock);

})

Critical Section

void *producer(void *arg) {
so t *so = arg;
int *ret = malloc(sizeof(int));
FILE *rfile = so->rfile;
int i;
int w = 0;
char *line;
for (1 = 0; (line = readline(rfile)); i++) {

waittill(so, 0, 0); /* grab lock when empty */
so->linenum = 1i; /* update the shared state */
so->line = line; /* share the line */
release(so, 1, 0); /* release the loc */
fprintf(stdout, "Prod: [%d] %s", 1, line);

}

waittill(so, 0, 0); /* grab lock when empty */

so->line = NULL;

release(so, 1, 0); /* release it full and NULL */

printf("Prod: %d lines\n", i);
*ret = i;
pthread exit(ret);

cs162 fald L10 10

Change in invariant on exit

void *consumer (void *arg) {
targ t *targ = (targ t *) arg;
long tid = targ->tid;
so t *so = targ->soptr;
int *ret = malloc(sizeof(int));
int i = 0;;
int len;
char *line;
int w = 0;
printf("Con %1d starting\n",tid);
while (waittill(so, 1, tid) &&
(line = so->1line)) {
len = strlen(line);
printf("Cons %1d: [%d:%d] %s", tid, i, so->linenum, line);

release(so, 0, tid); /* release the loc */
it++;

}

printf("Cons %1d: %d lines\n", tid, i);

release exit(so, tid); /* release the loc */

*ret = i;
pthread exit(ret);

cs162 fald L10 11

Condition Variables

 ALWAYS hold lock when calling wait, signal,
broadcast

— Condition variable is sync FOR shared state
— ALWAYS hold lock when accessing shared state
* Condition variable is memoryless
— |If signal when no one is waiting, no op
— |f wait before signal, waiter wakes up
* Wait atomically releases lock
— What if wait, then release? What if release, then wait?

int waittill(so_t *so, int wval, int tid) {
pthread mutex lock(&so->solock);
while (so->flag != val)
pthread cond wait(&so->flag cv, &so->solock);
return 1;

}

cecl162 $f214 110
o

CoTrUZ1TaoarlT L

Condition Variables, cont’d

* When a thread is woken up from wait, it may not
run immediately

— Signal/broadcast put thread on ready list

— When lock is released, anyone might acquire it
 Wait MUST be in a loop

while (needToWait())

condition.Wait(lock);

e Simplifies implementation

— Of condition variables and locks

— Of code that uses condition variables and locks

cs162 fald L10 13

Structured Synchronization

|dentify objects or data structures that can be accessed by
multiple threads concurrently

— In Pintos kernel, everything!

Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish

If need to wait
— while(needToWait()) condition.Wait(lock);
— Do not assume when you wake up, signaller just ran

If do something that might wake someone up
— Signal or Broadcast

Always leave shared state variables in a consistent state
— When lock is released, or when waiting

cs162 fald L10 14

Mesa vs. Hoare semantics

 Mesa (in textbook, Hansen)
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare
— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

— Nested signals possible!

cs162 fald L10 15

Concurrency Coordination Landscape §

Concurrent Applications

lecture 8

Shared Coordinated Objects

BounYed Queue

Flag List Dictionary Barrier

Synchronization Variables

Semaphore)

omic Operations

Monitors

Interrupt Disable/Enable Test-and-Set

Hardware

xchng
cmp&swap

Interrupts Multiple Processors

Controllers
fetch&inc

LL + SC

Recall: OS Implementation of Locks

« Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

Checking and Setting are indivisible

int value = FREE: r'! - otherwisetwo thread could see |BUSY
Acquire() { Relzase () {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) ({
put thread on wait|quzue; take thread off wait queue
Go to sleep(); Put at front of ready queue

} else {

// Enable interrupts?
value = FREE;

} else {
value = BUSY;
} }
enable interrupts;
} Critical
Section

}

enable interrupts;

Atomic Read-Modify-Write instructions$&

* Problems with interrupt-based lock solution:
— Does not work at User level (only system)

— Doesn’t work well on multiprocessor
- Disabling interrupts on all processors requires
coordination and would be very time consuming

» Alternative: atomic instruction sequences

— These instructions read a value from memory AND
write a new value atomically

— Hardware is responsible for implementing this
correctly
 on both uniprocessors (not too hard)
« and multiprocessors (requires help from cache coherence
protocol)
— Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors & at User level

Examples of Read-Modify-Write

test&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;

return result;

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = regilister;
register = temp;

compare&swap (&address, regl, reg2) { /* 68000 */

if (regl == [address]) {
M[address] = reg2;
return success;

} else {

return failure;

}

Q
il

Implementing “Locks” with test&set

R
&5

: : 4)
° . testé&set (&address) {
Simple solution: Stiser (saddrese) {
int value = 0; // Free M[address] = 1;
. return result;
Acquire () { }
while (testé&set (value)); // wiN _ A/
}
Release () {
value = 0;

}
« Simple explanation:

— If free:
* test&set reads 0 and sets value=1, so now busy.
* returns O so while exits

— if busy:

* test&set reads 1 and sets value=1 (no change). while loop
continues

— When we set value = 0, someone else can get “lock”

Why is this less than a Lock ?

cs162 fald L10 21

» Positives for this solution
— Machine can receive interrupts
— User code can use this lock
— Works on a multiprocessor

* Negatives
— Inefficient: busy-waiting thread consume cycles

— Waiting thread takes cycles away from thread holding
lock!

— Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock = no progress!

* Priority Inversion problem with original Martian rover
 For semaphores and monitors, waiting thread
may wait for an arbitrary length of time!

— Even if OK for locks, definitely not ok for other
primitives

What do we want?

* Grab free locks quickly

* otherwise we are going to sleep anyways...

cs162 fald L10 23

Locks using test&set

« Can we build test&set locks without busy-waiting?
— Can't entirely, but can minimize!
— ldea: only busy-wait to atomically check lock value

int guard = 0; ‘ ’
int value FREE ; d

.. owner, waitlist

Release () {

Acquire() { _ _ // Short busy-wait time
// Short busy-wait time while (testé&set(guard)) ;
while (testé&set(guard)) ; if anyone on wait queue {
if (value == BUSY) { take thread off wait queue
put thread on wait queue; Place on ready queue;
go to sleep() & guard = 0; } else {
} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}

* Note: sleep has to be sure to reset the guard variable
— Why can’t we do it just before or just after the sleep?

}

Locks using test&set vs. Interrupt Disabl&s

int value = FREE;
. owner, waiters ..

O

Acquire () { Release () {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) ({
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
// Enable interrupts? } else {
} else { value = FREE;

}

value = BUSY; enable interrupts;

} }

enable interrupts;

Locks using test&set vs. Interrupts

int value = FREE;
. owner, waiters ..

O

Acquire () {
while (testé&set(guard)) ;
if (value == BUSY) {

put thread on wait queue;

Go to sleep()

// guard = 0;
} else {

value = BUSY;

}
guard = O;

Release () {

while (testé&set(guard))

if (anyone on wait queue) ({
take thread off wait queue
Place on ready queue;

} else {
value

}
guard = 0;

FREE ;

Concurrency Coordination Landscape ¢

Concurrent Applications

lecture 8

Shared Coordinated Objects

BounYed Queue

Flag List Dictionary Barrier

Synchronization Variables

Semaphore)
! Interrupt Disable/Enable

omic Operations
Interrupts

Monitors

Test-and-Set

xchng

cmp&swap

Controllers \ple Processors

fetch&inc

LL + SC

You are here ...

Course Structure: Spiral

ooncep {p

9/26/14 UCB CS162 Fa14 L1 19

cs162 fal4 L10 28

