
Scheduling	

David E. Culler
 CS162 – Operating Systems and Systems

Programming
Lecture 11

Sept 24, 2014
	

Reading:	
 A&D	
 7-­‐7.1	
 	

HW	
 2	
 due	
 9/26	

Proj	
 1	
 design	
 review	

MT1:	
 9/29	
 6:00-­‐7:00	

Recall:	
 ObjecFves	

•  Introduce	
 the	
 concept	
 of	
 scheduling	

•  General	
 topic	
 that	
 applies	
 in	
 many	
 context	

–  rich	
 theory	
 and	
 pracFce	

•  Fundamental	
 trade-­‐offs	

– not	
 a	
 simple	
 find	
 the	
 “best”	

–  resoluFon	
 depends	
 on	
 context	

•  Ground	
 it	
 in	
 OS	
 context	

•  Ground	
 implementaFon	
 in	
 Pintos	

•  …	
 aWer	
 synch	
 implementaFon	
 wrap-­‐up	

cs162	
 fa14	
 L11	
 2	
 9/24/14	

Recall: CPU Bursts"

•  Programs alternate between bursts of CPU and I/O"
–  Program typically uses the CPU for some period of time, then does I/O,

then uses CPU again"
–  Each scheduling decision is about which job to give to the CPU for use

by its next CPU burst"
–  With timeslicing, thread may be forced to give up CPU before finishing

current CPU burst"

Weighted toward small bursts"

9/24/14	
 cs162	
 fa14	
 L11	
 3	

Recall: First-Come, First-Served (FCFS) Scheduling"

•  First-Come, First-Served (FCFS)"
–  Also “First In, First Out” (FIFO) or “Run until done”"

•  In early systems, FCFS meant one program  
scheduled until done (including I/O)"

•  Now, means keep CPU until thread blocks "
•  Example: "Process "Burst Time  

"P1 "24  
" P2 "3  
"P3 ! 3 !

–  Suppose processes arrive in the order: P1 , P2 , P3  The Gantt Chart for the schedule is: 
 
 
"

–   
 
"

–  Waiting time for P1 = 0; P2 = 24; P3 = 27"
–  Average waiting time: (0 + 24 + 27)/3 = 17"
–  Average completion time: (24 + 27 + 30)/3 = 27"

•  Convoy effect: short process behind long process"

P1" P2" P3"

24" 27" 30"0"

9/24/14	
 cs162	
 fa14	
 L11	
 4	

FCFS Scheduling (Cont.)"
•  Example continued:"

–  Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 
"

–  Waiting time for P1 = 6; P2 = 0; P3 = 3!
–  Average waiting time: (6 + 0 + 3)/3 = 3"
–  Average Completion time: (3 + 6 + 30)/3 = 13"

•  In second case:"
–  Average waiting time is much better (before it was 17)"
–  Average completion time is better (before it was 27) "

•  FCFS Pros and Cons:"
–  Simple (+)"
–  Short jobs get stuck behind long ones (-)"

•  Safeway: Getting milk, always stuck behind cart full of small items"

P1"P3"P2"

6"3" 30"0"

9/24/14	
 cs162	
 fa14	
 L11	
 5	

Recall: Round Robin (RR)"
•  FCFS Scheme: Potentially bad for short jobs!"

–  Depends on submit order"
–  If you are first in line at supermarket with milk, you don’t care who is

behind you, on the other hand…"
•  Round Robin Scheme"

–  Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds"

–  After quantum expires, the process is preempted  
and added to the end of the ready queue"

–  n processes in ready queue and time quantum is q ⇒"
•  Each process gets 1/n of the CPU time "
•  In chunks of at most q time units "
•  No process waits more than (n-1)q time units"

•  Performance"
–  q large ⇒ FCFS"
–  q small ⇒ Interleaved"
–  q must be large with respect to context switch, otherwise overhead is

too high (all overhead)"
9/24/14	
 cs162	
 fa14	
 L11	
 6	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 53 
" P2 ! ! 8" " 8 
" P3 ! !68 " 68 
" P4 ! ! 24 " 24"

–  The Gantt chart is:"

"

9/24/14	
 cs162	
 fa14	
 L11	
 7	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 33  
" P2 ! ! 8" " 8 
" P3 ! !68 " 68 
" P4 ! ! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

9/24/14	
 cs162	
 fa14	
 L11	
 8	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 33 
" P2 ! ! 8" " 0  
" P3 ! !68 " 68 
" P4 ! ! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

9/24/14	
 cs162	
 fa14	
 L11	
 9	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 33 
" P2 ! ! 8" " 0 
" P3 ! !68 " 48  
" P4 ! ! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

9/24/14	
 cs162	
 fa14	
 L11	
 10	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 33 
" P2 ! ! 8" " 0 
" P3 ! !68 " 48 
" P4 ! ! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

9/24/14	
 cs162	
 fa14	
 L11	
 11	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 13  
" P2 ! ! 8" " 0 
" P3 ! !68 " 48 
" P4 ! ! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

9/24/14	
 cs162	
 fa14	
 L11	
 12	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 13 
" P2 ! ! 8" " 0 
" P3 ! !68 " 28  
" P4 ! ! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

P3"

108"

9/24/14	
 cs162	
 fa14	
 L11	
 13	

Example of RR with Time Quantum = 20"
•  Example: "Process ""Burst Time "Remaining Time 

! P1 ! !53 " 0 
" P2 ! ! 8" " 0 
" P3 ! !68 " 0  
" P4 ! ! 24 " 0"

–  The Gantt chart is:"

– Waiting time for P1=(68-20)+(112-88)=72 " " " "
P2=(20-0)=20  
"P3=(28-0)+(88-48)+(125-108)=85  
P4=(48-0)+(108-68)=88"

–  Average waiting time = (72+20+85+88)/4=66¼"
–  Average completion time = (125+28+153+112)/4 = 104½"

•  Thus, Round-Robin Pros and Cons:"
–  Better for short jobs, Fair (+)"
–  Context-switching time adds up for long jobs (-)"

"

P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

P3"

108"

P4"

112"

P1"

125"

P3"

145"

P3"

153"

9/24/14	
 cs162	
 fa14	
 L11	
 14	

Round-Robin Discussion"
•  How do you choose time slice?"

– What if too big?"
•  Response time suffers"

– What if infinite (∞)?!
•  Get back FCFS/FIFO"

– What if time slice too small?"
•  Throughput suffers! "

•  Actual choices of timeslice:"
–  Initially, UNIX timeslice one second:"

•  Worked ok when UNIX was used by one or two people."
•  What if three compilations going on? 3 seconds to echo

each keystroke!"
–  In practice, need to balance short-job performance

and long-job throughput:"
•  Typical time slice today is between 10ms – 100ms"
•  Typical context-switching overhead is 0.1ms – 1ms"
•  Roughly 1% overhead due to context-switching"
"9/24/14	
 cs162	
 fa14	
 L11	
 15	

Round	
 Robin	
 Slice	

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

Round Robin (100 ms time slice)

(1)

(2)

(3)

(4)

(5)

rest of task 1

rest of task 1

9/24/14	
 cs162	
 fa14	
 L11	
 16	

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always

better than FCFS?"
•  Simple example: "10 jobs, each takes 100s of CPU time  

"RR scheduler quantum of 1s 
"All jobs start at the same time"

•  Completion Times: 
"

•  FIFO average 550"

•  RR average 995.5!"

"

Job #! FIFO! RR!
1" 100" 991"
2" 200" 992"
…" …" …"
9" 900" 999"

10" 1000" 1000"

P1" P2" P9" P10"…"

0! 100! 800! 900! 1000!200!
FCFS!

…"

0! 10! 980! 990! 1000!20!

…" …" …" …"

999!991!

RR!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR

always better than FCFS?"
•  Simple example: "10 jobs, each takes 100s of CPU time  

"RR scheduler quantum of 1s 
"All jobs start at the same time"

"
•  Both RR and FCFS finish at the same time"
•  Average response time is much worse under RR!"

–  Bad when all jobs same length"
•  Also: Cache state must be shared between all jobs

with RR but can be devoted to each job with FCFS"
–  Total time for RR longer even for zero-cost switch!"

"

P1" P2" P9" P10"…"

0! 100! 800! 900! 1000!200!
FCFS!

…"

0! 10! 980! 990! 1000!20!

…" …" …" …"

999!991!

RR!

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 8" 32" 85" 153"

Best FCFS:!

31¼"8"85"0"32"Best FCFS"

69½"32"153"8"85"Best FCFS"

9/24/14	
 cs162	
 fa14	
 L11	
 19	

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

31¼"8"85"0"32"Best FCFS"

69½"32"153"8"85"Best FCFS"

121¾"145"68"153"121"Worst FCFS"

83½"121"0"145"68"Worst FCFS"

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 68" 121" 145"153"

Worst FCFS:!

9/24/14	
 cs162	
 fa14	
 L11	
 20	

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

62"57"85"22"84"Q = 1"

104½"112"153"28"125"Q = 20"

100½"81"153"30"137"Q = 1"

66¼ "88"85"20"72"Q = 20"

31¼"8"85"0"32"Best FCFS"

121¾"145"68"153"121"Worst FCFS"

69½"32"153"8"85"Best FCFS"
83½"121"0"145"68"Worst FCFS"

95½"80"153"16"133"Q = 8"

57¼"56"85"8"80"Q = 8"

99½"92"153"18"135"Q = 10"

99½"82"153"28"135"Q = 5"

61¼"68"85"10"82"Q = 10"

61¼"58"85"20"82"Q = 5"

P1"

0" 8" 56"

P2" P3" P4" P1" P3" P4" P1" P3" P4" P1" P3" P1" P3" P3"P3"

16! 24" 32" 40" 48" 64" 72" 80! 88" 96" 104" 112"

P1" P3" P1"
120" 128" 133!141"149"

P3"
153!

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 68" 121" 145"153"

Worst FCFS:!

9/24/14	
 cs162	
 fa14	
 L11	
 21	

Round-Robin Discussion"
•  How do you choose time slice?"

– What if too big?"
•  Response time suffers"

– What if infinite (∞)?!
•  Get back FCFS/FIFO"

– What if time slice too small?"
•  Throughput suffers! "

•  Actual choices of timeslice:"
–  Initially, UNIX timeslice one second:"

•  Worked ok when UNIX was used by one or two people."
•  What if three compilations going on? 3 seconds to echo

each keystroke!"
–  In practice, need to balance short-job performance

and long-job throughput:"
•  Typical time slice today is between 10ms – 100ms"
•  Typical context-switching overhead is 0.1ms – 1ms"
•  Roughly 1% overhead due to context-switching"
"9/24/14	
 cs162	
 fa14	
 L11	
 22	

AdministraFve	
 Break	

•  Survey	
 thanks	

•  Midterm	
 Monday	
 6pm	

–  145	
 DWINELLE	
 	
 (aa	
 –	
 W)	

–  	
 2040	
 VALLEY	
 LSB	
 (fu	
 –	
 jl)	

–  	
 2060	
 VALLEY	
 LSB	
 (jm	
 –	
 ni)	

–  review	
 session	
 1-­‐3:00	
 pm	
 on	
 Sat	
 9/26	
 @100	
 GPB	

•  Vote:	
 Q&A	
 Monday	
 ???	

•  Design	
 review	
 is	
 to	
 help	
 you	
 get	
 a	
 clear	
 path	
 to	

compleFon	
 –	
 not	
 a	
 big	
 grading	
 hurdle	

•  HWs	
 are	
 to	
 help	
 you	
 internalize	
 the	
 concepts	

•  project	
 test	
 jigs	
 …	

cs162	
 fa14	
 L11	
 23	
 9/24/14	

What if we Knew the Future?"
•  Shortest Job First (SJF):"

–  Run whatever job has the least amount of  
computation to do"

•  Shortest Remaining Time First (SRTF):"
–  Preemptive version of SJF: if job arrives and has a

shorter time to completion than the remaining time on
the current job, immediately preempt CPU"

•  but how do you now???"

•  Idea is to get short jobs out of the system"
–  Big effect on short jobs, only small effect on long ones"
–  Result is better average response time"

•  Want a simple approximation to SRTF …"
9/24/14	
 cs162	
 fa14	
 L11	
 24	

FIFO	
 vs.	
 SJF	

Time

Tasks

(1)

(2)

(3)

(4)

(5)

FIFO

SJF

(1)

(2)

(3)

(4)

(5)

But	
 what	
 if	
 more	
 and	

more	
 short	
 jobs	
 keep	

arriving,	
 e.g.,	
 lots	
 of	

lille	
 I/Os	
 ???	

9/24/14	
 cs162	
 fa14	
 L11	
 25	

Discussion"
•  SJF/SRTF are best at minimizing average

response time"
– Provably optimal (SJF among non-preemptive,

SRTF among preemptive)"
– Since SRTF is always at least as good as SJF,

focus on SRTF"

•  Comparison of SRTF with FCFS and RR"
– What if all jobs the same length?"

•  SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)"

– What if jobs have varying length?"
•  SRTF (and RR): short jobs not stuck behind long ones"

9/24/14	
 cs162	
 fa14	
 L11	
 26	

Example to illustrate benefits of SRTF"

•  Three jobs: ""
–  A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O"
–  If only one at a time, C uses 90% of the disk, A or B use

100% of the CPU"
•  With FIFO:"

–  Once A or B get in, keep CPU for one week each"
•  What about RR or SRTF?"

–  Easier to see with a timeline"

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

9/24/14	
 cs162	
 fa14	
 L11	
 27	

RR vs. SRTF"

C’s !
I/O!

CABAB…! C!

C’s !
I/O!

RR 1ms time slice!

C’s !
I/O!

C’s !
I/O!

C!A! B!C!

RR 100ms time slice!

C’s !
I/O!

A!C!

C’s !
I/O!

A!A!

SRTF!

Disk Utilization:"
~90% but lots of
wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"

9/24/14	
 cs162	
 fa14	
 L11	
 28	

SRTF Further discussion"
•  Starvation"

–  SRTF can lead to starvation if many small jobs!"
–  Large jobs never get to run"

•  Somehow need to predict future"
–  How can we do this? "
–  Some systems ask the user"

•  When you submit a job, have to say how long it will take"
•  To stop cheating, system kills job if takes too long"

–  But: even non-malicious users have trouble predicting runtime of
their jobs"

•  Bottom line, can’t really know how long job will take"
–  However, can use SRTF as a yardstick  

for measuring other policies"
–  Optimal => Practical approximations?"

•  SRTF Pros & Cons"
–  Optimal (average response time) (+)"
–  Hard to predict future (-)"
–  Unfair (-)"

9/24/14	
 cs162	
 fa14	
 L11	
 29	

PredicFng	
 the	
 Length	
 of	
 the	
 Next	
 CPU	
 Burst	

•  Adaptive: Changing policy based on past behavior"

– CPU scheduling, in virtual memory, in file systems, etc."
– Works because programs have predictable behavior"

•  If program was I/O bound in past, likely in future"
•  If computer behavior were random, wouldn’t help"

•  Example: SRTF with estimated burst length"
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)"

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc.)"

– Example:  
Exponential averaging 
τn = αtn-1+(1-α)τn-1  
with (0<α≤1)"

 
"

9/24/14	
 cs162	
 fa14	
 L11	
 30	

MulF-­‐Level	
 Feedback	
 Scheduling	

Another	
 method	
 for	
 exploiFng	
 past	
 behavior	

–  First	
 used	
 in	
 Cambridge	
 Time	
 Sharing	
 System	
 (CTSS)	

– MulFple	
 queues,	
 each	
 with	
 different	
 priority	

•  Higher	
 priority	
 queues	
 oWen	
 considered	
 “foreground”	
 tasks	

–  Each	
 queue	
 has	
 its	
 own	
 scheduling	
 algorithm	

•  e.g.,	
 foreground	
 –	
 RR,	
 background	
 –	
 FCFS	

•  SomeFmes	
 mulFple	
 RR	
 prioriFes	
 with	
 quantum	
 increasing	

exponenFally	
 (highest:1ms,	
 next:2ms,	
 next:	
 4ms,	
 etc.)	

•  Adjust	
 each	
 job’s	
 priority	
 as	
 follows	
 (details	
 vary)	

–  Job	
 starts	
 in	
 highest	
 priority	
 queue	

–  If	
 Fmeout	
 expires,	
 drop	
 one	
 level	

–  If	
 Fmeout	
 doesn’t	
 expire,	
 push	
 up	
 one	
 level	
 (or	
 to	
 top)	

Long-Running !
Compute tasks !

demoted to  
low priority!

9/24/14	
 cs162	
 fa14	
 L11	
 31	

Scheduling	
 Details	

•  Result	
 approximates	
 SRTF:	

– CPU	
 bound	
 jobs	
 drop	
 like	
 a	
 rock	

– Short-­‐running	
 I/O	
 bound	
 jobs	
 stay	
 near	
 top	

•  Scheduling	
 must	
 be	
 done	
 between	
 the	
 queues	

– Fixed	
 priority	
 scheduling:	
 	

•  Serve	
 all	
 from	
 highest	
 priority,	
 then	
 next	
 priority,	
 etc.	

– Time	
 slice:	

•  Each	
 queue	
 gets	
 a	
 certain	
 amount	
 of	
 CPU	
 Fme	
 	

•  e.g.,	
 70%	
 to	
 highest,	
 20%	
 next,	
 10%	
 lowest	

9/24/14	
 cs162	
 fa14	
 L11	
 32	

Scheduling Fairness"
•  What about fairness?"

–  Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):"

•  Long running jobs may never get CPU "
•  In Multics, shut down machine, found 10-year-old job"

–  Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run"

–  Tradeoff: fairness gained by hurting average response
time!"

•  How to implement fairness?"
–  Could give each queue some fraction of the CPU "

•  What if one long-running job and 100 short-running ones?"
•  Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other lines"
–  Could increase priority of jobs that don’t get service"

•  What is done in UNIX"
•  This is ad hoc—what rate should you increase priorities?"

9/24/14	
 cs162	
 fa14	
 L11	
 33	

Lottery Scheduling"
•  Yet another alternative: Lottery Scheduling"

–  Give each job some number of lottery tickets"
–  On each time slice, randomly pick a winning ticket"
–  On average, CPU time is proportional to number of

tickets given to each job"
•  How to assign tickets?"

–  To approximate SRTF, short running jobs get more,
long running jobs get fewer"

–  To avoid starvation, every job gets at least one ticket
(everyone makes progress)"

•  Advantage over strict priority scheduling:
behaves gracefully as load changes"
–  Adding or deleting a job affects all jobs proportionally,

independent of how many tickets each job possesses"

9/24/14	
 cs162	
 fa14	
 L11	
 34	

Lottery Scheduling Example"
•  Lottery Scheduling Example"

–  Assume short jobs get 10 tickets, long jobs get 1 ticket"

–  What if too many short jobs to give reasonable  
response time? "

•  In UNIX, if load average is 100, hard to make progress"
•  One approach: log some user out"

short jobs/!
long jobs!

% of CPU each
short jobs gets!

% of CPU each
long jobs gets!

1/1" 91%" 9%"
0/2" N/A" 50%"
2/0" 50%" N/A"

10/1" 9.9%" 0.99%"
1/10" 50%" 5%"

9/24/14	
 cs162	
 fa14	
 L11	
 35	

How	
 to	
 Evaluate	
 a	
 Scheduling	
 algorithm?	

•  DeterminisFc	
 modeling	

– Takes	
 a	
 predetermined	
 workload	
 and	
 compute	
 the	

performance	
 of	
 each	
 algorithm	
 	
 for	
 that	
 workload	

•  Queuing	
 models	

– MathemaFcal	
 approach	
 for	
 handling	
 stochasFc	

workloads	

•  ImplementaFon/SimulaFon:	

– Build	
 system	
 which	
 allows	
 actual	
 algorithms	
 to	
 be	
 run	

against	
 actual	
 data.	
 	
 Most	
 flexible/general.	

9/24/14	
 cs162	
 fa14	
 L11	
 36	

A	
 Final	
 Word	
 On	
 Scheduling	

•  When	
 do	
 the	
 details	
 of	
 the	
 scheduling	
 policy	
 and	

fairness	
 really	
 maler?	

– When	
 there	
 aren’t	
 enough	
 resources	
 to	
 go	
 around	

•  When	
 should	
 you	
 simply	
 buy	
 a	
 faster	
 computer?	

–  (Or	
 network	
 link,	
 or	
 expanded	
 highway,	
 or	
 …)	

–  One	
 approach:	
 Buy	
 it	
 when	
 it	
 will	
 pay	
 	

for	
 itself	
 in	
 improved	
 response	
 Fme	

•  Assuming	
 you’re	
 paying	
 for	
 worse	
 	

response	
 Fme	
 in	
 reduced	
 producFvity,	
 	

customer	
 angst,	
 etc…	

•  Might	
 think	
 that	
 you	
 should	
 buy	
 a	
 	

faster	
 X	
 when	
 X	
 is	
 uFlized	
 100%,	
 	

but	
 usually,	
 response	
 Fme	
 goes	
 	

to	
 infinity	
 as	
 uFlizaFon⇒100%	

•  An	
 interesFng	
 implicaFon	
 of	
 this	
 curve:	

– Most	
 scheduling	
 algorithms	
 work	
 fine	
 in	
 the	
 “linear”	
 porFon	

of	
 the	
 load	
 curve,	
 fail	
 otherwise	

–  Argues	
 for	
 buying	
 a	
 faster	
 X	
 when	
 hit	
 “knee”	
 of	
 curve	

Utilization!

R
esponse tim

e!

100%
!

9/24/14	
 cs162	
 fa14	
 L11	
 37	

Scheduling Summary"
•  Scheduling: selecting a process from the ready queue

and allocating the CPU to it"
•  FCFS Scheduling:"

–  Run threads to completion in order of submission"
–  Pros: Simple (+)"
–  Cons: Short jobs get stuck behind long ones (-)"

•  Round-Robin Scheduling: "
–  Give each thread a small amount of CPU time when it

executes; cycle between all ready threads"
–  Pros: Better for short jobs (+)"
–  Cons: Poor when jobs are same length (-)"

•  Shortest Remaining Time First (SRTF)"
–  Run whatever job has the least remaining amount of

computation to do !!!"
–  Pros: Optimal (average response time) "
–  Cons: Hard to predict future, Unfair"

"
"

9/24/14	
 cs162	
 fa14	
 L11	
 38	

Summary (cont’d)"
•  MulF-­‐Level	
 Feedback	
 Scheduling:	

– MulFple	
 queues	
 of	
 different	
 prioriFes	

– AutomaFc	
 promoFon/demoFon	
 of	
 process	
 priority	
 in	

order	
 to	
 approximate	
 SJF/SRTF	

•  Lolery	
 Scheduling:	

– Give	
 each	
 thread	
 a	
 number	
 of	
 tokens	
 (short	
 tasks	
 ⇒	

more	
 tokens)	

– Reserve	
 a	
 minimum	
 number	
 of	
 tokens	
 for	
 every	

thread	
 to	
 ensure	
 forward	
 progress/fairness	

9/24/14	
 cs162	
 fa14	
 L11	
 39	

