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Recall: Objectives

* Introduce the concept of scheduling
* General topic that applies in many context

— rich theory and practice

e Fundamental trade-offs
— not a simple find the “best”

— resolution depends on context
* Ground it in OS context
* Ground implementation in Pintos
e ... after synch implementation wrap-up
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Recall: CPU Bursts

Weighted toward small bursts
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* Programs alternate between bursts of CPU and 1/0O
— Program typically uses the CPU for some period of time, then does 1/0O,

then uses CPU again

— Each scheduling decision is about which job to give to the CPU for use

by its next CPU burst

— With timeslicing, thread may be forced to give up CPU before finishing

current CPU burst
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Recall: First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

* In early systems, FCFS meant one program
scheduled until done (including I/0O)

* Now, means keep CPU until thread blocks

« Example: Process Burst Time
P, 24
P, 3
P 3

— Suppose processes arrive in the order: P, , P,, P,
The Gantt Chart for the schedule is:

0 24 27 30
— Waiting time for P, =0; P, =24; P,=27

— Average waiting time: (0 +24 + 27)/3 =17
— Average completion time: (24 + 27 + 30)/3 = 27

« Convoy effect: short process behind long process
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FCFS Scheduling (Cont.)

« Example continued:

— Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, | P, P,

0 3 6 30

— Waiting time for P, =6,P,=0.P;=3
— Average waiting time: (6 +0+3)/3=3
— Average Completion time: (3 + 6 + 30)/3 =13
* In second case:
— Average waiting time is much better (before it was 17)
— Average completion time is better (before it was 27)

« FCFS Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)

« Safeway: Getting milk, always stuck behind cart full of small items
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Recall: Round Robin (RR)

« FCFS Scheme: Potentially bad for short jobs!

— Depends on submit order
— If you are first in line at supermarket with milk, you don’t care who jg
behind you, on the other hand... _

 Round Robin Scheme

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After quantum expires, the process is preempted
and added to the end of the ready queue

— nprocesses in ready queue and time quantumis g =
« Each process gets 1/n of the CPU time

* In chunks of at most g time units
* No process waits more than (n-1)g time units

 Performance
— qglarge = FCFS

— g small = Interleaved
— g must be large with respect to context switch, otherwise overhead is
too high (all overhead)
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Example of RR with Time Quantum = 20

° Example: Process Burst Time Remaining Time
P, 53 53
P, 8 8
P, 68 68
P, 24 24

— The Gantt chart is:

9/24/14 cs162 fal4 L11 7



Example of RR with Time Quantum = 20§

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 8
P, 68 68
P, 24 24
— The Gantt chart is:
P'I
0O 20
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Example of RR with Time Quantum = 20

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 0
P, 68 68
P, 24 24
— The Gantt chart is:
O 20 28
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Example of RR with Time Quantum = 20

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 0
P, 68 48
P, 24 24

— The Gantt chart is:

P, I[P, |P,
O 20 28 48
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Example of RR with Time Quantum = 20 &

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 0
P, 68 48
P, 24 4

— The Gantt chart is:

P, [P, P, |P,
0O 20 28 48 68
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Example of RR with Time Quantum = 20 &

° Example: Process Burst Time Remaining Time
) 53 13
P, 8 0
P, 68 48
P, 24 4

— The Gantt chart is:

P, |P, |P; |P, |P
O 20 28 48 68 88
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Example of RR with Time Quantum = 20 &

° Example: Process Burst Time Remaining Time
P, 53 13
P, 8 0
P, 68 o8
P, 24 4

— The Gantt chart is:

P, |P, (P, [P, [P, |P,
O 20 28 48 68 88 108
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Example of RR with Time Quantum = 20§

° Example: Process Burst Time — Remaining Time
P 93 0
P, 8 0
P 68 0
P 24 0

— The Gantt chart is:

0O 20 28 48 68 88 108 112 125 145 153
— Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
— Average waiting time = (72+20+85+88)/4=66 4
— Average completion time = (125+28+153+112)/4 = 104>

 Thus, Round-Robin Pros and Cons:

— Better for short jobs, Fair (+)
o/24/14 — Context-switching time adds sie2for long jobs (-) 14



Round-Robin Discussion

* How do you choose time slice?

— What if too big?
* Response time suffers

— What if infinite () ?
* Get back FCFS/FIFO

— What if time slice too small?
» Throughput suffers!

* Actual choices of timeslice:

— Initially, UNIX timeslice one second:
« Worked ok when UNIX was used by one or two people.
« What if three compilations going on? 3 seconds to echo
each keystroke!

— In practice, need to balance short-job performance
and long-job throughput:
 Typical time slice today is between 10ms — 100ms
 Typical context-switching overhead is 0.1ms — 1ms
* Roughly 1% overhead due to context-switching
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Round Robin Slice

Tasks Round Robin (1 ms time slice)
(1) D rest of task 1
@ []

3) []
(4) []
(5) []

Round Robin (100 ms time slice)

(1) rest of task 1
) ]

3) []

4) []

(5) []

A\4
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Comparisons between FCFS and Round Robin

« Assuming zero-cost context-switching time, is RR always
better than FCFS?

° Simple example: 10 jobs, each takes 100s of CPU time
RR scheduler quantum of 1s

All jobs start at the same time

FCFS| P1 P2 P9 P10
0 100 200 800 900 1000
RR
0 10 20 980 990 1000
1
Job # FIFO RR 291 999
« Completion Times: 1 100 991
2 200 992
« FIFO average 550
' 9 900 999
* RR average 995.5! 10 1000 1000




Comparisons between FCFS and Round Robin

« Assuming zero-cost context-switching time, is RR
always better than FCFS?

Slmple example: 10 jobs, each takes 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

FCFS| P1 P2 P9 P10
0 100 200 800 900 1000
RR
0 10 20 980 990 1000
991 999

« Both RR and FCFS finish at the same time
« Average response time is much worse under RR!

— Bad when all jobs same length

« Also: Cache state must be shared between all jobs
with RR but can be devoted to each job with FCFS

— Total time for RR longer even for zero-cost switch!



Earlier Example with Ditferent Time

Quantum
_ P, | P, P, P,
Best FCFS: [8] [24] [53] [68]
O 8 32 85 153
Quantum P, P, P, P, Average
Best FCFS 32 0 85 8 31Va
Wait
Time
Best FCFS 85 8 153 32 6914
Completion
Time
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Earlier Example with Ditferent Time

Quantum
. 2 P, P, P,
Worst FCFS: [68] [53] [24] [8]
0 68 121 145 153
Quantum P, P, P, P, Average
Best FCFS 32 0 85 8 31Va
Wait
Time
Worst FCFS | 68 145 0 121 8314
Best FCFS 85 8 153 32 6914
Completion
Time
Worst FCFS 121 153 68 145 12134
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Earlier Example with Ditferent Time

Quantum
Ps P, P, P,
0 68 121 145 153
| Quantum P. P. P. P. Average
P, |P, |Ps [Py | P, |Ps [Py |P, |Ps|Ps| P, |Ps|P,|Ps|P, [Py |P, [Py |Ps|Ps
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 133 141149153
%‘.’a't Q=8 ~* [s0 8 85 56 571
Ime
Q=10 /|82 10 85 68 61%
Q=20 [ |72 20 85 88 66
Worst FCF$ | 68 145 0 121 8315
Best FCFJ |85 8 153 32 697
Q=1 [ [137 |30 153 81 100
ST Q=5 j 135 |28 153 82 9915
Tirme Q=8 133 16 153 80 95
Q=10 135 18 153 92 995
Q=20 125 |28 153 112 104"
Worst FCFS | 121 153 68 145 12134
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Round-Robin Discussion

* How do you choose time slice?

— What if too big?
* Response time suffers

— What if infinite () ?
* Get back FCFS/FIFO

— What if time slice too small?
» Throughput suffers!

* Actual choices of timeslice:

— Initially, UNIX timeslice one second:
« Worked ok when UNIX was used by one or two people.
« What if three compilations going on? 3 seconds to echo
each keystroke!

— In practice, need to balance short-job performance
and long-job throughput:
 Typical time slice today is between 10ms — 100ms
 Typical context-switching overhead is 0.1ms — 1ms
* Roughly 1% overhead due to context-switching
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Administrative Break

9/24/14

Survey thanks L | | am
Midterm Monday 6pm il —1

— 145 DWINELLE (aa — ft)
— 2040 VALLEY LSB (fu — jl) R R P
— 2060 VALLEY LSB (jm — ni)

— review session 1-3:00 pm on Sat 9/26 @100 GPB

Vote: Q&A Monday ??7?

Design review is to help you get a clear path to
completion — not a big grading hurdle

HWs are to help you internalize the concepts
project test jigs ...
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Shortest Job First (SJF):

— Run whatever job has the least amount of
computation to do

Shortest Remaining Time First (SRTF):

— Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

* but how do you now???
|dea is to get short jobs out of the system
— Big effect on short jobs, only small effect on long ones

— Result is better average response time
« Want a simple approximation to SRTF ...
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FIFO vs. SJF

Tasks FIFO
(1)
(2)
(3)
(4)
(5)
SJF
(1)
) But what if more and
(3) more short jobs keep
(4) arriving, e.g., lots of
(5) little I/Os 27?7

N/

Time
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Discussion

« SJF/SRTF are best at minimizing average
response time

— Provably optimal (SJF among non-preemptive,
SRTF among preemptive)

— Since SRTF is always at least as good as SJF,
focus on SRTF

« Comparison of SRTF with FCFS and RR

— What if all jobs the same length?

« SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)

— What if jobs have varying length?
« SRTF (and RR): short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

AorB C

— — I—)
Cs Cs OC’s
1/10 1/10 1/10

* Three jobs:

— A,B: CPU bound, each run for a week
C: I/0O bound, loop 1ms CPU, 9ms disk 1/0O

— If only one at a time, C uses 90% of the disk, A or B use
100% of the CPU

 With FIFO:

— Once A or B get in, keep CPU for one week each
 What about RR or SRTF?

— Easier to see with a timeline
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RR vs. SRTF

Disk Utilization:

C A B 9/201 ~ 4.5%
| I |
| | I .
— - - . age . .
C’s RR 100ms time slice jD'Sk Utilization:
I/O ~90°/o but IOtS Of
___ wakeups!
CABAB... C )
1111
i 1 . .
— — RR 1ms time slice
C’s C’s
/0 /0
JDisk Utilization:
C A A A 90%
i || — b
|
—— SRTF
Cs C’s
10O 1/0
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SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
« When you submit a job, have to say how long it will take
» To stop cheating, system Kkills job if takes too long

— But: even non-malicious users have trouble predicting runtime of
their jobs
Bottom line, can’t really know how long job will take

— However, can use SRTF as a yardstick 2
for measuring other policies

— Optimal => Practical approximations?

SRTF Pros & Cons

— Optimal (average response time) (+)
— Hard to predict future (-)
— Unfair (-)
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Predicting the Length of the Next CPU Burst@;

» Adaptive: Changing policy based on past behavior
— CPU scheduling, in virtual memory, in file systems, etc.

— Works because programs have predictable behavior
« If program was I/O bound in past, likely in future
* If computer behavior were random, wouldn’t help

« Example: SRTF with estimated burst length

— Use an estlmator function on previous bursts:
Lett ., t o, etc. be previous CPU burst lengths.
Estimate nextsburstr = f(t,.{, to t3 --2)

— Function f cowd be on of man¥ dlfferent time series
estimation schemes (Kalman filters, etc.)

with (O<a<1)

— Example: ]
Exponential averaging " ‘Z_ ﬁ
Tn — Ottn_1+(1 'OL)‘IZrH L 6

9/24/14 cs162 fal4 L11 CPU burst (1) 6 4 & 4 13 18 13 30
"guess” (1) 10 8 6 6 5 9 11 12



Multi-Level Feedback Scheduling

> quantum = 8 i
_L\ Long-Running
LHL — _ Compute tasks
— L demoted to

low priority
L> “ EEES

Another method for exploiting past behavior
— First used in Cambridge Time Sharing System (CTSS)

— Multiple queues, each with different priority
* Higher priority queues often considered “foreground” tasks

— Each queue has its own scheduling algorithm
e e.g., foreground — RR, background — FCFS

* Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc.)

e Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— |f timeout expires, drop one level
ou— If timeout doesn’t expirg;.push up one level (or to top)




Scheduling Details

* Result approximates SRTF:

— CPU bound jobs drop like a rock
— Short-running 1/0 bound jobs stay near top

* Scheduling must be done between the queues
— Fixed priority scheduling:
* Serve all from highest priority, then next priority, etc.

— Time slice:

* Each queue gets a certain amount of CPU time
e e.g., 70% to highest, 20% next, 10% lowest
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Scheduling Fairness

What about fairness?

— Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
* Long running jobs may never get CPU
* In Multics, shut down machine, found 10-year-old job

— Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

— Tradeoff: fairness gained by hurting average response
time!

* How to implement fairness?

— Could give each queue some fraction of the CPU
* What if one long-running job and 100 short-running ones?
 Like express lanes in a supermarket—sometimes express lanes
get so long, get better service by going into one of the other lines
— Could increase priority of jobs that don’t get service
* What is done in UNIX

» This is ad hoc—what rate should you increase priorities?
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Lottery Scheduling

* Yet another alternative: Lottery Scheduling
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

— On average, CPU time is proportional to number of
tickets given to each job

* How to assign tickets?

— To approximate SRTF, short running jobs get more,
long running jobs get fewer

— To avoid starvation, every job gets at least one ticket
(everyone makes progress)
« Advantage over strict priority scheduling:
behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses
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Lottery Scheduling Example
 Lottery Scheduling Example

— Assume short jobs get 10 tickets, long jobs get 1 ticket

# short jobs/ % of CPU each | % of CPU each
# long jobs short jobs gets long jobs gets
1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 90% 9%

— What if too many short jobs to give reasonable

response time?

* In UNIX, if load average is 100, hard to make progress
* One approach: log some user out

9/24/14
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How to Evaluate a Scheduling algorithm?

* Deterministic modeling

— Takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queuing models
— Mathematical approach for handling stochastic

* Impleme; =
. . performance
. simulation —>»  statistics
— BU||d Sy for FCFS
. FCFS
against |
CPU 10
o 218
actual CPU 12 performance
process —=(l/0 112 =)  simulation =»  statistics
execution ©RUED for SJF
/10 147
CPU 173 SJF
trace tape
\ . . performance
simulation —>  statistics
for RR (g = 14)
BRYq=114)

ns to be run

9/24/14

cs162 fal4 L11

36



A Final Word On Scheduling

* When do the details of the scheduling policy and
fairness really matter?

— When there aren’t enough resources to go around

 When should you simply buy a faster computer?

— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay
for itself in improved response time

e Assuming you’re paying for worse
response time in reduced productivity,
customer angst, etc...

* Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization=100%

* Aninteresting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion
of the load curve, fail otherwise

on4714 — Argues for buying a fastesiXawhen hit “knee” of curve 37
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Scheduling Summary

Scheduling: selecting a process from the ready queue
and allocating the CPU to it

FCFS Scheduling:

— Run threads to completion in order of submission
— Pros: Simple (+)

— Cons: Short jobs get stuck behind long ones (-)

Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

— Pros: Better for short jobs (+)

— Cons: Poor when jobs are same length (-)

Shortest Remaining Time First (SRTF)

— Run whatever job has the least remaining amount of
computation to do !!!

— Pros: Optimal (average response time)
— Cons: Hard to predict future, Unfair

alad 011 38
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Summary (cont’d)

 Multi-Level Feedback Scheduling:
— Multiple queues of different priorities

— Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

e Lottery Scheduling:

— Give each thread a number of tokens (short tasks =
more tokens)

— Reserve a minimum number of tokens for every
thread to ensure forward progress/fairness
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