
Intro to Scheduling
(+ OS sync wrap)	

David E. Culler
 CS162 – Operating Systems and Systems

Programming
Lecture 10

Sept 17, 2014
	

Reading:	
 A&D	
 7-­‐7.1	
 	

HW	
 2	
 due	
 wed	

Proj	
 1	
 design	
 review	

h=ps://compuBng.llnl.gov/tutorials/pthreads/	

ObjecBves	

•  Introduce	
 the	
 concept	
 of	
 scheduling	

•  General	
 topic	
 that	
 applies	
 in	
 many	
 context	

–  rich	
 theory	
 and	
 pracBce	

•  Fundamental	
 trade-­‐offs	

– not	
 a	
 simple	
 find	
 the	
 “best”	

–  resoluBon	
 depends	
 on	
 context	

•  Ground	
 it	
 in	
 OS	
 context	

•  Ground	
 implementaBon	
 in	
 Pintos	

•  …	
 aSer	
 synch	
 implementaBon	
 wrap-­‐up	

cs162	
 fa14	
 L10	
 2	

Recall:	
 A	
 Lock	

•  Value:	
 FREE	
 (0)	
 or	
 BUSY	
 (1)	

•  A	
 queue	
 of	
 waiters	
 (threads*)	

– a=empBng	
 to	
 acquire	

•  An	
 owner	
 (thread)	

•  Acquire:	
 wait	
 Bll	
 Free,	
 take	
 ownership,	
 make	

busy	

•  Release:	
 relinquish	
 ownership,	
 make	
 Free,	
 if	

waiter	
 allow	
 it	
 to	
 complete	
 acquire	

•  Both	
 are	
 atomic	
 rela+ve	
 to	
 other	
 threads	

cs162	
 fa14	
 L10	
 3	

semaphore	
 has	
 these	

	
 -­‐	
 value	
 is	
 int	

Recall:	
 the	
 “else”	
 quesBon	
 ???	

cs162	
 fa14	
 L10	
 4	

Locks!
int value = 0;
Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

If one thread in critical
section, no other activity
(including OS) can run! !

Don’t	
 we	
 need	
 to	

do	
 this	
 regardless?	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

FREE	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	
 Running	

READY	

cs162	
 fa14	
 L10	
 5	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	
 Running	

READY	

cs162	
 fa14	
 L10	
 6	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

Running	

cs162	
 fa14	
 L10	
 7	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

Running	

cs162	
 fa14	
 L10	
 8	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

Running	

READY	

cs162	
 fa14	
 L10	
 9	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

Running	

cs162	
 fa14	
 L10	
 10	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 A	

READY	

cs162	
 fa14	
 L10	
 11	

Running	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

Running	

cs162	
 fa14	
 L10	
 12	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

cs162	
 fa14	
 L10	
 13	

Running	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 A	

READY	

cs162	
 fa14	
 L10	
 14	

Running	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 A	

READY	

cs162	
 fa14	
 L10	
 15	

Running	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

cs162	
 fa14	
 L10	
 16	

Running	

Locks"

INIT
 int value = 0;

Acquire() {
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

BUSY	
 waiters	
 owner	

Thread	
 A	

Thread	
 B	

READY	

cs162	
 fa14	
 L10	
 17	

Running	

recall:	
 MulBple	
 Consumers,	
 etc.	

•  More	
 general	
 relaBonships	
 require	
 mutual	

exclusion	

– Each	
 line	
 is	
 consumed	
 exactly	
 once!	

cs162	
 fa14	
 L10	
 18	

Producer	

Input	
 file	

Line	
 of	
 text	

Line	
 of	
 text	

Consumer	

Consumer	

Consumer	

Incorporate	
 Mutex	
 into	
 shared	
 object	

•  Methods	
 on	
 the	
 object	
 provide	
 the	

synchronizaBon	

– Exactly	
 one	
 consumer	
 will	
 process	
 the	
 line	

cs162	
 fa14	
 L10	
 19	

typedef struct sharedobject {!
 FILE *rfile;!
 pthread_mutex_t solock;!
 int flag;!
 int linenum;!
 char *line;!
} so_t;!

int waittill(so_t *so, int val) {!
 while (1) {!
 pthread_mutex_lock(&so->solock); !
 if (so->flag == val) !

! !return 1; /* rtn with object locked */!
 pthread_mutex_unlock(&so->solock); !
 }!
} !
int release(so_t *so) {!
 return pthread_mutex_unlock(&so->solock);!
}!

Recall:	
 MulB	
 Consumer	

cs162	
 fa14	
 L10	
 20	

void *producer(void *arg) {!
 so_t *so = arg;!
 int *ret = malloc(sizeof(int));!
 FILE *rfile = so->rfile;!
 int i;!
 int w = 0;!
 char *line;!
 for (i = 0; (line = readline(rfile)); i++) {!
 waittill(so, 0); /* grab lock when empty */!
 so->linenum = i; /* update the shared state */!
 so->line = line; /* share the line */!
 so->flag = 1; /* mark full */!
 release(so); /* release the loc */!
 fprintf(stdout, "Prod: [%d] %s", i, line);!
 }!
 waittill(so, 0); /* grab lock when empty */!
 so->line = NULL;!
 so->flag = 1;!
 printf("Prod: %d lines\n", i);!
 release(so); /* release the loc */!
 *ret = i;!
 pthread_exit(ret);!
}!

Scheduling	

•  the	
 art,	
 theory,	
 and	
 pracBce	
 of	
 deciding	
 what	

to	
 do	
 next	

•  Ex:	
 FIFO	
 non-­‐prempBve	
 scheduling	

•  Ex:	
 Round-­‐Robin	

•  Ex:	
 Priority-­‐based	

•  Ex:	
 Coordinated	

cs162	
 fa14	
 L10	
 21	

DefiniBon	

•  Scheduling	
 policy:	
 algorithm	
 for	
 determining	
 what	
 to	
 do	

next,	
 when	
 there	
 are	

–  mulBple	
 threads	
 to	
 run,	
 or	

–  mulBple	
 packets	
 to	
 send,	
 or	
 web	
 requests	
 to	
 serve,	
 or	
 …	

•  Job	
 or	
 Task:	
 unit	
 of	
 scheduling	

–  quanta	
 of	
 a	
 thread	

–  program	
 to	
 compleBon	

–  …	

•  Workload	

–  Set	
 of	
 tasks	
 for	
 system	
 to	
 perform	

–  Typically	
 formed	
 over	
 Bme	
 as	
 scheduled	
 tasks	
 produce	
 other	

tasks	

•  Metrics:	
 properBes	
 that	
 scheduling	
 may	
 seek	
 to	
 opBmize	

cs162	
 fa14	
 L10	
 22	

Processor Scheduling"

•  life-cycle of a thread"
–  Active threads work their way from Ready queue to Running to

various waiting queues."
•  Scheduling: deciding which threads are given access to

resources"
•  How to decide which of several threads to dequeue and run?"

–  So far we have a single ready queue"
–  Reason for wait->ready may make a big difference!"

Concretely:	
 Pintos	
 Scheduler	

•  IniBally	
 a	
 round-­‐robin	
 scheduler	
 of	
 thread	

quanta	

•  Algorithm:	
 next_thread_to_run	

cs162	
 fa14	
 L10	
 24	

static void schedule (void) {!
 struct thread *cur = running_thread ();!
 struct thread *next = next_thread_to_run ();!
 struct thread *prev = NULL;!
!
 ASSERT (intr_get_level () == INTR_OFF);!
 ASSERT (cur->status != THREAD_RUNNING);!
 ASSERT (is_thread (next));!
!
 if (cur != next)!
 prev = switch_threads (cur, next);!
 thread_schedule_tail (prev);!
}!

!d#
status#
stack#
priority#
list#

magic###

Kernel	
 threads	
 call	
 into	
 scheduler	

•  At	
 various	
 points	
 (eg.	
 sema_down)	
 kernel	
 thread	
 must	

block	
 itself	

–  it	
 calls	
 schedule	
 to	
 allow	
 next	
 task	
 to	
 be	
 selected	

9/15/14	
 25	

Kernel	

User	

code	

data	

!d#
status#
stack#
priority#
list#

magic###

!d#
status#
stack#
priority#
list#

magic###

!d#
status#
stack#
priority#
list#

magic###

schedule(
 ..	
)	
 {	

	

}	

void thread_block (void) {!
 ASSERT (!intr_context ());!
 ASSERT (intr_get_level () == INTR_OFF);!
 thread_current()->status = THREAD_BLOCKED;!
 schedule ();!
}!

Ready	

Threads	

First	
 In	
 First	
 Out	
 -­‐	
 FCFS	

•  Schedule	
 tasks	
 in	
 the	
 order	
 they	
 arrive	

– Run	
 unBl	
 they	
 complete	
 or	
 give	
 up	
 the	
 processor	

Ar
riv

e	

W
ai
t	

Ru
n	

st
ar
t	

en
d	

scheduling	
 overhead	

response	
 Bme	

Round-­‐Robin	

•  Each	
 task	
 gets	
 a	
 fixed	
 amount	
 of	
 the	
 resource	

(Bme	
 quantum)	

–  if	
 does	
 not	
 complete,	
 goes	
 back	
 into	
 queue	

•  How	
 large	
 a	
 Bme	
 quantum?	

–  Too	
 short?	
 	
 Too	
 long?	
 	
 Trade-­‐offs?	

response	
 Bme	

Scheduling Metrics"
•  Waiting Time: time the job is waiting in the ready queue"

–  Time between job’s arrival in the ready queue and launching the job"
•  Service (Execution) Time: time the job is running"
•  Response (Completion) Time: "

–  Time between job’s arrival in the ready queue and job’s completion"
–  Response time is what the user sees:"

•  Time to echo a keystroke in editor"
•  Time to compile a program"

"Response Time = Waiting Time + Service Time!
"
•  Throughput: number of jobs completed per unit of time "

–  Throughput related to response time, but not same thing:"
•  Minimizing response time will lead to more context switching than if you

only maximized throughput"

Scheduling Policy Goals/Criteria"
•  Minimize Response Time"

–  Minimize elapsed time to do an operation (or job)"
•  Maximize Throughput"

–  Two parts to maximizing throughput"
•  Minimize overhead (for example, context-switching)"
•  Efficient use of resources (CPU, disk, memory, etc)"

•  Fairness"
–  Share CPU among users in some equitable way"
–  Fairness is not minimizing average response time:"

•  Better average response time by making system less fair"

Priority	
 Scheduling	

•  PrioriBes	
 can	
 be	
 a	
 way	
 to	
 express	
 desired	
 outcome	

to	
 the	
 scheduler	

–  important	
 (high	
 priority)	
 tasks	
 first,	
 quicker,	
 …	

– while	
 low	
 priority	
 ones	
 when	
 resources	
 available,	
 …	

•  Peer	
 discussion:	
 in	
 groups	
 of	
 2-­‐4	
 come	
 up	
 with	
 two	

ways	
 to	
 introduce	
 priori+es	
 into	
 FIFO	
 and	
 RR.	

•  How	
 might	
 prioriBes	
 interact	
 posiBvely	
 /	
 negaBvely	

with	
 synchronizaBon?	
 	
 With	
 I/O	
 ?	

cs162	
 fa14	
 L10	
 30	

Round	
 Robin	
 vs	
 FIFO	

cs162	
 fa14	
 L10	
 31	

FIFO	

Round	
 Robin	

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

FIFO and SJF

(1)

(2)

(3)

(4)

(5)

Round	
 Robin	
 vs.	
 FIFO	

CPU Bursts"

•  Programs alternate between bursts of CPU and I/O"
–  Program typically uses the CPU for some period of time, then does I/O,

then uses CPU again"
–  Each scheduling decision is about which job to give to the CPU for use

by its next CPU burst"
–  With timeslicing, thread may be forced to give up CPU before finishing

current CPU burst"

Weighted toward small bursts"

Round	
 Robin	
 Slice	

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

Round Robin (100 ms time slice)

(1)

(2)

(3)

(4)

(5)

rest of task 1

rest of task 1

Round-Robin Discussion"
•  How do you choose time slice?"

– What if too big?"
•  Response time suffers"

– What if infinite (∞)?!
•  Get back FCFS/FIFO"

– What if time slice too small?"
•  Throughput suffers! "

•  Actual choices of timeslice:"
–  Initially, UNIX timeslice one second:"

•  Worked ok when UNIX was used by one or two people."
•  What if three compilations going on? 3 seconds to echo

each keystroke!"
–  In practice, need to balance short-job performance

and long-job throughput:"
•  Typical time slice today is between 10ms – 100ms"
•  Typical context-switching overhead is 0.1ms – 1ms"
•  Roughly 1% overhead due to context-switching"
"

What if we Knew the Future?"
•  Shortest Job First (SJF):"

–  Run whatever job has the least amount of  
computation to do"

•  Shortest Remaining Time First (SRTF):"
–  Preemptive version of SJF: if job arrives and has a

shorter time to completion than the remaining time on
the current job, immediately preempt CPU"

•  but how do you now???"

•  Idea is to get short jobs out of the system"
–  Big effect on short jobs, only small effect on long ones"
–  Result is better average response time"

•  Want a simple approximation to SRTF …"

FIFO	
 vs.	
 SJF	

Time

Tasks

(1)

(2)

(3)

(4)

(5)

FIFO

SJF

(1)

(2)

(3)

(4)

(5)

But	
 what	
 if	
 more	
 and	

more	
 short	
 jobs	
 keep	

arriving,	
 e.g.,	
 lots	
 of	

li=le	
 I/Os	
 ???	

Discussion"
•  SJF/SRTF are best at minimizing average

response time"
– Provably optimal (SJF among non-preemptive,

SRTF among preemptive)"
– Since SRTF is always at least as good as SJF,

focus on SRTF"

•  Comparison of SRTF with FCFS and RR"
– What if all jobs the same length?"

•  SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)"

– What if jobs have varying length?"
•  SRTF (and RR): short jobs not stuck behind long ones"

Example to illustrate benefits of SRTF"

•  Three jobs: ""
–  A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O"
–  If only one at a time, C uses 90% of the disk, A or B use

100% of the CPU"
•  With FIFO:"

–  Once A or B get in, keep CPU for one week each"
•  What about RR or SRTF?"

–  Easier to see with a timeline"

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

RR vs. SRTF"

C’s !
I/O!

CABAB…! C!

C’s !
I/O!

RR 1ms time slice!

C’s !
I/O!

C’s !
I/O!

C!A! B!C!

RR 100ms time slice!

C’s !
I/O!

A!C!

C’s !
I/O!

A!A!

SRTF!

Disk Utilization:"
~90% but lots of
wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"

SRTF Further discussion"
•  Starvation"

–  SRTF can lead to starvation if many small jobs!"
–  Large jobs never get to run"

•  Somehow need to predict future"
–  How can we do this? "
–  Some systems ask the user"

•  When you submit a job, have to say how long it will take"
•  To stop cheating, system kills job if takes too long"

–  But: even non-malicious users have trouble predicting runtime of
their jobs"

•  Bottom line, can’t really know how long job will take"
–  However, can use SRTF as a yardstick  

for measuring other policies"
–  Optimal => Practical approximations?"

•  SRTF Pros & Cons"
–  Optimal (average response time) (+)"
–  Hard to predict future (-)"
–  Unfair (-)"

Summary"
•  Scheduling: selecting a process from the ready queue

and allocating the CPU to it"
•  FCFS Scheduling:"

–  Run threads to completion in order of submission"
–  Pros: Simple (+)"
–  Cons: Short jobs get stuck behind long ones (-)"

•  Round-Robin Scheduling: "
–  Give each thread a small amount of CPU time when it

executes; cycle between all ready threads"
–  Pros: Better for short jobs (+)"
–  Cons: Poor when jobs are same length (-)"

•  Shortest Remaining Time First (SRTF):"
–  Run whatever job has the least remaining amount of

computation to do"
–  Pros: Optimal (average response time) "
–  Cons: Hard to predict future, Unfair"

"
"

Backup	
 Detail	
 on	
 Scheduling	
 Trade-­‐Offs	

cs162	
 fa14	
 L10	
 43	

First-Come, First-Served (FCFS) Scheduling"

•  First-Come, First-Served (FCFS)"
–  Also “First In, First Out” (FIFO) or “Run until done”"

•  In early systems, FCFS meant one program  
scheduled until done (including I/O)"

•  Now, means keep CPU until thread blocks "
•  Example: "Process "Burst Time  

"P1 "24  
" P2 "3  
"P3 ! 3 !

–  Suppose processes arrive in the order: P1 , P2 , P3  The Gantt Chart for the schedule is: 
 
 
 
 
"

–  Waiting time for P1 = 0; P2 = 24; P3 = 27"
–  Average waiting time: (0 + 24 + 27)/3 = 17"
–  Average completion time: (24 + 27 + 30)/3 = 27"

•  Convoy effect: short process behind long process"

P1" P2" P3"

24" 27" 30"0"

FCFS Scheduling (Cont.)"
•  Example continued:"

–  Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 
"

–  Waiting time for P1 = 6; P2 = 0; P3 = 3!
–  Average waiting time: (6 + 0 + 3)/3 = 3"
–  Average Completion time: (3 + 6 + 30)/3 = 13"

•  In second case:"
–  Average waiting time is much better (before it was 17)"
–  Average completion time is better (before it was 27) "

•  FCFS Pros and Cons:"
–  Simple (+)"
–  Short jobs get stuck behind long ones (-)"

•  Safeway: Getting milk, always stuck behind cart full of small items"

P1"P3"P2"

6"3" 30"0"

Round Robin (RR)"
•  FCFS Scheme: Potentially bad for short jobs!"

–  Depends on submit order"
–  If you are first in line at supermarket with milk, you don’t care who is

behind you, on the other hand…"
•  Round Robin Scheme"

–  Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds"

–  After quantum expires, the process is preempted  
and added to the end of the ready queue"

–  n processes in ready queue and time quantum is q ⇒"
•  Each process gets 1/n of the CPU time "
•  In chunks of at most q time units "
•  No process waits more than (n-1)q time units"

•  Performance"
–  q large ⇒ FCFS"
–  q small ⇒ Interleaved"
–  q must be large with respect to context switch, otherwise overhead is

too high (all overhead)"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 53 
" P2 !! 8 " " 8 
" P3 !!68 " 68 
" P4 !! 24 " 24"

–  The Gantt chart is:"

"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 33  
" P2 !! 8 " " 8 
" P3 !!68 " 68 
" P4 !! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

Example of RR with Time Quantum =
20"•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 33 
" P2 !! 8 " " 0  
" P3 !!68 " 68 
" P4 !! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

Example of RR with Time Quantum =
20"•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 33 
" P2 !! 8 " " 0 
" P3 !!68 " 48  
" P4 !! 24 " 24"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 33 
" P2 !! 8 " " 0 
" P3 !!68 " 48 
" P4 !! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 13  
" P2 !! 8 " " 0 
" P3 !!68 " 48 
" P4 !! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 13 
" P2 !! 8 " " 0 
" P3 !!68 " 28  
" P4 !! 24 " 4"

–  The Gantt chart is:"

"
P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

P3"

108"

Example of RR with Time Quantum = 20"
•  Example: "Process " "Burst Time "Remaining Time 

! P1 !!53 " 0 
" P2 !! 8 " " 0 
" P3 !!68 " 0  
" P4 !! 24 " 0"

–  The Gantt chart is:"

– Waiting time for P1=(68-20)+(112-88)=72 " " " "
P2=(20-0)=20  
" P3=(28-0)+(88-48)+(125-108)=85  
" P4=(48-0)+(108-68)=88"

–  Average waiting time = (72+20+85+88)/4=66¼"
–  Average completion time = (125+28+153+112)/4 = 104½"

•  Thus, Round-Robin Pros and Cons:"
–  Better for short jobs, Fair (+)"
–  Context-switching time adds up for long jobs (-)"

"

P1"

0" 20"

P2"

28"

P3"

48"

P4"

68"

P1"

88"

P3"

108"

P4"

112"

P1"

125"

P3"

145"

P3"

153"

Round-Robin Discussion"
•  How do you choose time slice?"

– What if too big?"
•  Response time suffers"

– What if infinite (∞)?!
•  Get back FCFS/FIFO"

– What if time slice too small?"
•  Throughput suffers! "

•  Actual choices of timeslice:"
–  Initially, UNIX timeslice one second:"

•  Worked ok when UNIX was used by one or two people."
•  What if three compilations going on? 3 seconds to echo

each keystroke!"
–  In practice, need to balance short-job performance

and long-job throughput:"
•  Typical time slice today is between 10ms – 100ms"
•  Typical context-switching overhead is 0.1ms – 1ms"
•  Roughly 1% overhead due to context-switching"
"

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is

RR always better than FCFS?"
•  Simple example: "10 jobs, each takes 100s of CPU time  

"RR scheduler quantum of 1s 
"All jobs start at the same time"

•  Completion Times: 
"

•  FIFO average 550"

•  RR average 995.5!"

"

Job #! FIFO! RR!
1" 100" 991"
2" 200" 992"
…" …" …"
9" 900" 999"

10" 1000" 1000"

P1" P2" P9" P10"…"

0! 100! 800! 900! 1000!200!
FCFS!

…"

0! 10! 980! 990! 1000!20!

…" …" …" …"

999!991!

RR!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always better than FCFS?"
•  Simple example: "10 jobs, each takes 100s of CPU time  

"RR scheduler quantum of 1s 
"All jobs start at the same time"

•  Both RR and FCFS finish at the same time"
•  Average response time is much worse under RR!"

– Bad when all jobs same length"
•  Also: Cache state must be shared between all

jobs with RR but can be devoted to each job with FCFS"
–  Total time for RR longer even for zero-cost switch!"

"

P1" P2" P9" P10"…"

0! 100! 800! 900! 1000!200!
FCFS!

…"

0! 10! 980! 990! 1000!20!

…" …" …" …"

999!991!

RR!

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 8" 32" 85" 153"

Best FCFS:!

31¼"8"85"0"32"Best FCFS"

69½"32"153"8"85"Best FCFS"

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

31¼"8"85"0"32"Best FCFS"

69½"32"153"8"85"Best FCFS"

121¾"145"68"153"121"Worst FCFS"

83½"121"0"145"68"Worst FCFS"

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 68" 121" 145"153"

Worst FCFS:!

 "

Quantum"

Completion"
Time"

Wait"
Time"

Average"P4"P3"P2"P1"

Earlier Example with Different Time
Quantum"

62"57"85"22"84"Q = 1"

104½"112"153"28"125"Q = 20"

100½"81"153"30"137"Q = 1"

66¼ "88"85"20"72"Q = 20"

31¼"8"85"0"32"Best FCFS"

121¾"145"68"153"121"Worst FCFS"

69½"32"153"8"85"Best FCFS"
83½"121"0"145"68"Worst FCFS"

95½"80"153"16"133"Q = 8"

57¼"56"85"8"80"Q = 8"

99½"92"153"18"135"Q = 10"

99½"82"153"28"135"Q = 5"

61¼"68"85"10"82"Q = 10"

61¼"58"85"20"82"Q = 5"

P1"

0" 8" 56"

P2" P3" P4" P1" P3" P4" P1" P3" P4" P1" P3" P1" P3" P3"P3"

16! 24" 32" 40" 48" 64" 72" 80! 88" 96" 104" 112"

P1" P3" P1"
120" 128" 133!141"149"

P3"
153!

P2"
[8]"

P4"
[24]"

P1"
[53]"

P3"
[68]"

0" 68" 121" 145"153"

Worst FCFS:!

