Intro to Scheduling
(+ OS sync wrap)

David E. Culler

CS162 — Operating Systems and Systems
Programming

Lecture 10
Sept 17, 2014

Reading: A&D 7-7.1
https://computing.linl.gov/tutorials/pthreads/ HW 2 due wed

Proj 1 design review

Objectives

Introduce the concept of scheduling
General topic that applies in many context

— rich theory and practice

Fundamental trade-offs
— not a simple find the “best”

— resolution depends on context

Ground it in OS context

Ground implementation in Pintos

... after synch implementation wrap-up

cs162 fald L10

Recall: A Lock

e Value: FREE (0) or BUSY (1)
* A queue of waiters (threads™) [~ semaphore has these

]] - value is int
— attempting to acquire

 An owner (thread)

* Acquire: wait till Free, take ownership, make
busy

* Release: relinquish ownership, make Free, if
waiter allow it to complete acquire

e Both are atomic relative to other threads

cs162 fald L10

Recall: the “else” question ??7?

Locks

int value = 0;

o Acquire () {
disable interrupts;
. if (value == 1) {
Acqglre() ? put thread on wait-queue;
disable interrupts; go to sleep() //2?

} } else {

value = 1;

lock.Acquire() ; enable inter ts;

critical section;

Don’t we need to
R do this regardless?

lock.Release () ;

Release() { - T Release() {
enable interrupts; disable interrupts;
} if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
If one thread in critical enable interrupts;

section, no other activity }
(including OS) can run!

cs162 fald L10 4

Locks READY

FREE waiters | | owner

Running Thread B
INIT
Thread A int value = 0;
.quire() {
) disable interrupts; i
lock.Acquire () if (value == 1) ({ lock.Acquire() ;
s put thread on wait-queue; e
critical section; go to sleep() //?? critical section;
" } else { "
lock.Release() ; value = 1; lock.Release() ;

enable interrupts;

}
}

Release () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 5

Locks READY

BUSY waiters owner

nning Thread B
INIT
‘quire() {
) disable interrupts; i
lock.Acquire () if (value == 1) { lock.Acquire() ;
s put thread on wait-queue; e
critical sectleon; go to sleep() //?? critical section;
" } else { "
lock.Release() ; value = 1; lock.Release() ;

‘ enable interrupts;

}
}

Release () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 6

Locks READY

BUSY waiters owner

wr:g\ e / Thread B

Thread A int value = 0;
> 4

quire() { 7

lock.Acquire ()77 = i€ (valire e=mTY lock.Acquire() ;

critical séct}___n.;-"‘ go to sleep() //2? critical section;
““““ } else { "
value = 1; lock.Release() ;

lock.Release() ;
() enable interrupts;

Release () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 7

Locks

BUSY

waiters

ovvne;

READY

=iVl L

<'
Thread A

lock.Acquire ()«

critical S$Ct s

"""""" }

lock.Release() ;

int value =

else {
value = 1;
enable interrupts;

Release () {
disable interrupts;
if anyone on wait queue {

}
}

take thread off wait-queue
Place on ready queue;
else {

value = 0;

enable interrupts;

}

cs162 fald L10

Running

Thread B

lock.Acquire() ;
critical section;

lock.Release() ;

Locks

BUSY

waiters

ovvne;

READY

=iVl L

<'
Thread A

lock.Acquire

"""""" }

int value =

else {
value = 1;
enable interrupts;

Release () {
disable interrupts;
if anyone on wait queue {

}
}

take thread off wait-queue
Place on ready queue;
else {

value = 0;

enable interrupts;

}

cs162 fald L10

Running

Thread B

lock.Acquire() ;
critical section;

lock.Release() ;

Locks READY

BUSY || waiters | | owner Running
<' =33 99
Thread A int value = 0;

lock.Acquire() ;

lock.Acquire

critical aéctx n;--" go to sleep() //?? critical section;
““““ } else { "
value = 1; lock.Release() ;

enable interrupts;

Release () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 10

Locks READY

BUSY || waiterf || owner Running
/
/X? Thread A
<' = =y 3 = = §
Thread A int value = 0;

lock.Acquire lock.Acquire() ;

go to sleep(critical section;

} else {

value = 1; lock.Release() ;
enable interrupts;

Release () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 11

Locks READY

BUSY waiterf owner

Running /
/\> ﬁ*Thread B
INIT

Thread A int value

lock.Acquire () lock.Acquire() ;

go to sleep(critical section;

lock.Release () ; value = 1; lock.Release () ;

enable interrupts;

lease () {
disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

cs162 fald L10 12

Locks READY

BUSY waiterf owner

Running /
/\> ﬁ*Thread B
INIT

Thread A int value

lock.Acquire () lock.Acquire() ;

go to sleep(critical section;

lock.Release () ; value = 1; lock.Release () ;

enable interrupts;

lease () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}

enable interrupts;

}

cs162 fald L10 13

Locks READY

BUSY waiters owner,

Running
INTT Thread A
Thread A int wvalue
quire() {

lock.Acquire () lock.Acquire() ;

go to sleep(critical section;

lock.Release () ; value = 1; lock.Release () ;

enable interrupts;

lease () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}

enable interrupts;

}

cs162 fald L10 14

Locks READY

BUSY waiters owner,

Running
INTT Thread A
quire() {

lock.Acquire () lock.Acquire() ;

go to sleep(critical section;

lock.Releas () ; value = 1; lock.Release() ;
enable interrupts;

lease () {
dlsable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;
0

nable interrupts;

cs162 fald L10 15

Locks READY

BUSY waiters owner,

Running
Thr%ad B
INIT
ThreadA% rre—valiue — U,
quire() { /DT
disable interrypts;
lock.Acquire ()7 CDif (valus-=="1 lock.Acquire() ;

critical section;

g
Prod

1; lock.Release() ;

lease () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
() enable interrupts;

}

16

cs162 fald L10

Locks READY

BUSY waiters owner,

Running
Thr\éad B
INIT
ThreadA% rre—valiue — U,
quire() { /DT
disable interrypts;
lock.Acquire ()7 CDif (valus-=="1 lock.Acquire() ;

l critical section;

g
Prod

1; lock.Release() ;

lease () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
() enable interrupts;

}

17

cs162 fald L10

recall: Multiple Consumers, etc.

) Y
AP
Line of text @
B< (oo
Input fil /
- Line of text

 More general relationships require mutual
exclusion

— Each line is consumed exactly once!

cs162 fald L10 18

Incorporate Mutex into shared object®

* Methods on the object provide the

synchronization

— Exactly one consumer will process the line

typedef struct sharedobject {

FILE *rfile;

pthread mutex t solock;

int flag;

int linenum;

char *line;
} so_t;

int waittill(so_t *so, int val) {

}

}

while (1) {
pthread mutex lock(&so->solock);
if (so->flag == val)
return 1; /* rtn with object locked */
pthread mutex unlock(&so->solock);

int release(so t *so) {
return pthread mutex unlock(&so->solock);

}

cs162 fal4d L10

19

Recall: Multi Consumer

void *producer(void *arg) {
so t *so = arg;
int *ret = malloc(sizeof(int));
FILE *rfile = so->rfile;
int i;
int w = 0;
char *line;
for (1 = 0; (line = readline(rfile)); i++) {

waittill(so, 0); /* grab lock when empty */
so->linenum = 1i; /* update the shared state */
so->line = line; /* share the line */
so->flag = 1; /* mark full */
release(so0); /* release the loc */
fprintf(stdout, "Prod: [%d] %s", 1, line);

}

waittill(so, 0); /* grab lock when empty */

so->line = NULL;

so->flag = 1;

printf("Prod: %d lines\n", 1i);

release(so); /* release the loc */
*ret = i;

pthread exit(ret);

cs162 fald L10 20

Scheduling

e the art, theory, and practice of deciding what
to do next

* Ex: FIFO non-premptive scheduling
* Ex: Round-Robin

e Ex: Priority-based

Ex Coordmated

cs162 fald L10

Definition

Scheduling policy: algorithm for determining what to do
next, when there are

— multiple threads to run, or

— multiple packets to send, or web requests to serve, or ...
Job or Task: unit of scheduling

— quanta of a thread

— program to completion

Workload

— Set of tasks for system to perform

— Typically formed over time as scheduled tasks produce other
tasks

Metrics: properties that scheduling may seek to optimize

cs162 fal4d L10

22

Processor Scheduling

ready queue » CPU i
I/O queue < I/0O request

time slice
expired

child fork a P
executes child N

A A 4

[3

interrupt wait for an P
Q:curs interrupt

life-cycle of a thread

— Active threads work their way from Ready queue to Running to
various waiting queues.

Scheduling: deciding which threads are given access to
resources

How to decide which of several threads to dequeue and run?
— So far we have a single ready queue

— Reason for wait->ready may make a big difference!

Concretely: Pintos Scheduler

static void schedule (void) {
struct thread *cur = running thread ();
struct thread *next = next thread to run ();

struct thread *prev NULL;
ASSERT (intr_get level () == INTR OFF);
ASSERT (cur->status != THREAD RUNNING) ;

ASSERT (is_thread (next));

if (cur != next)
prev = switch threads (cur, next);
thread schedule tail (prev);

* |nitially a round-robin scheduler of thread
guanta

* Algorithm: next_thread to run

cs162 fald L10 24

Kernel threads call into scheduler

* At various points (eg. sema_down) kernel thread must
block itself

— it calls schedule to allow next task to be selected

void thread block (void) ({
ASSERT (!intr context ());

ASSERT (intr get level () == INTR OFF);

thread current()->status = THREAD BLOCKED;
schedule ();

}
} code /
I/ /

Q Ready
data Threads

e |

schedule(..) {

[—

| —e

magic # magic # malgic # magic #
prilz)s;city\ S list ey pri!)s:ity\ S list o
stack e - pg{ggﬁy‘_; stack e~ o pg{gzllgy‘:_ e r n e
_ status {| status ~ status Stack \K

t
— | -

User

code

data

%k k%

heap
Waiting

" User
. stack | stack | 25

First In First Out - FCFS

* Schedule tasks in the order they arrive

— Run until they complete or give up the processor

2 /cheduling overhead

+— Arrive
Wait
start
Run
n

—

<— response time >

Round-Robin

* Each task gets a fixed amount of the resource
(time quantum)
— if does not complete, goes back into queue

i — —
R R ™
| S S O L R (R

< response time >

* How large a time quantum?
— Too short? Too long? Trade-offs?

Scheduling Metrics

Waiting Time: time the job is waiting in the ready queue

— Time between job’s arrival in the ready queue and launching the job
Service (Execution) Time: time the job is running

Response (Completion) Time:

— Time between job’s arrival in the ready queue and job’s completion
— Response time is what the user sees:

» Time to echo a keystroke in editor

« Time to compile a program

Response Time = Waiting Time + Service Time

Throughput: number of jobs completed per unit of time

— Throughput related to response time, but not same thing:

* Minimizing response time will lead to more context switching than if you
only maximized throughput

Scheduling Policy Goals/Criteria

* Minimize Response Time
— Minimize elapsed time to do an operation (or job)

* Maximize Throughput

— Two parts to maximizing throughput

« Minimize overhead (for example, context-switching)
 Efficient use of resources (CPU, disk, memory, etc)

* Fairness
— Share CPU among users in some equitable way

— Fairness is not minimizing average response time:
» Better average response time by making system /ess fair

Priority Scheduling

* Priorities can be a way to express desired outcome
to the scheduler

— important (high priority) tasks first, quicker, ...
— while low priority ones when resources available, ...

e Peer discussion: in groups of 2-4 come up with two
ways to introduce priorities into FIFO and RR.

* How might priorities interact positively / negatively
with synchronization? With I/O ?

cs162 fald L10 30

Round Robin vs FIFO

BIRS——

4 -

| o
Ro:r;in

i

-

cs162 fal4 L10 31

Round Robin vs. FIFO

Tasks Round Robin (1 ms time slice)

(1
(2
3
4
(5

—

)
)
e e e
)
)

FIFO and SJF

—~
—

—
N

—_~ o~
Dow
N N N N N

—
U

N/

Time

CPU Bursts

load store

add store CPU burst|
read from file
160 - wait for I/O /O burst
1w - Weighted toward small bursts store increment
index CPU burst|

write to file

NI

1/O burst

wait for I/O

frequency

load store
add store CPU burst|

read from file

wait for I/O 1/0O burst

| 1 1 1 1
0 8 16 24 32 40
burst duration (milliseconds)

* Programs alternate between bursts of CPU and 1/0O

— Program typically uses the CPU for some period of time, then does 1/0O,
then uses CPU again

— Each scheduling decision is about which job to give to the CPU for use
by its next CPU burst

— With timeslicing, thread may be forced to give up CPU before finishing
current CPU burst

Round Robin Slice

Tasks Round Robin (1 ms time slice)

D rest of task 1

Round Robin (100 ms time slice)

rest of task 1

A\4

Time

Round-Robin Discussion

* How do you choose time slice?

— What if too big?
* Response time suffers

— What if infinite () ?
* Get back FCFS/FIFO

— What if time slice too small?
» Throughput suffers!

* Actual choices of timeslice:

— Initially, UNIX timeslice one second:
« Worked ok when UNIX was used by one or two people.

« What if three compilations going on? 3 seconds to echo
each keystroke!

— In practice, need to balance short-job performance
and long-job throughput:
 Typical time slice today is between 10ms — 100ms
 Typical context-switching overhead is 0.1ms — 1ms
* Roughly 1% overhead due to context-switching

Shortest Job First (SJF):

— Run whatever job has the least amount of
computation to do

Shortest Remaining Time First (SRTF):

— Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

* but how do you now???
|dea is to get short jobs out of the system
— Big effect on short jobs, only small effect on long ones

— Result is better average response time
Want a simple approximation to SRTF ...

FIFO vs. SJF

Tasks FIFO
(1)
(2)
(3)
(4)
(5)
SJF
(1)
) But what if more and
(3) more short jobs keep
(4) arriving, e.g., lots of
(5) little I/Os 27?7

N
/

Time

Discussion

« SJF/SRTF are best at minimizing average
response time

— Provably optimal (SJF among non-preemptive,
SRTF among preemptive)

— Since SRTF is always at least as good as SJF,
focus on SRTF

« Comparison of SRTF with FCFS and RR

— What if all jobs the same length?

« SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)

— What if jobs have varying length?
« SRTF (and RR): short jobs not stuck behind long ones

Example to illustrate benefits of SRTF

AorB C

— — I—)
Cs Cs OC’s
1/10 1/10 1/10

* Three jobs:

— A,B: CPU bound, each run for a week
C: I/0O bound, loop 1ms CPU, 9ms disk 1/0O

— If only one at a time, C uses 90% of the disk, A or B use
100% of the CPU

 With FIFO:

— Once A or B get in, keep CPU for one week each
 What about RR or SRTF?

— Easier to see with a timeline

RR vs. SRTF

Disk Utilization:

C A B 9/201 ~ 4.5%
| I |
| | Il
C’s RR 100ms time slice jD'Sk Utilization:
I/O ~90°/o but IOtS Of
___ wakeups!
CABAB... C
11111 |
i . .
— — RR 1ms time slice
C’s C’s
I/0 I/0
JDisk Utilization:
C A A A 90%
i || — b
|IRR!
— — SRTF
Cs C’s

Vo 10

SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
« When you submit a job, have to say how long it will take
» To stop cheating, system Kkills job if takes too long

— But: even non-malicious users have trouble predicting runtime of
their jobs
Bottom line, can’t really know how long job will take

— However, can use SRTF as a yardstick 2
for measuring other policies

— Optimal => Practical approximations?

SRTF Pros & Cons

— Optimal (average response time) (+)
— Hard to predict future (-)
— Unfair (-)

Summary

Scheduling: selecting a process from the ready queue
and allocating the CPU to it

FCFS Scheduling:

— Run threads to completion in order of submission
— Pros: Simple (+)

— Cons: Short jobs get stuck behind long ones (-)

Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

— Pros: Better for short jobs (+)

— Cons: Poor when jobs are same length (-)

Shortest Remaining Time First (SRTF):

— Run whatever job has the least remaining amount of
computation to do

— Pros: Optimal (average response time)
— Cons: Hard to predict future, Unfair

Backup Detail on Scheduling Trade-Offs

cs162 fald L10 43

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

* In early systems, FCFS meant one program
scheduled until done (including I/0O)

* Now, means keep CPU until thread blocks

« Example: Process Burst Time
P, 24
P, 3
P 3

— Suppose processes arrive in the order: P, , P,, P,
The Gantt Chart for the schedule is:

— Waitingytime for P; =0; P, =24; P;5327 o7 30
— Average waiting time: (0 +24 + 27)/3=17
— Average completion time: (24 + 27 + 30)/3 = 27

« Convoy effect: short process behind long process

FCFS Scheduling (Cont.)

« Example continued:

— Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, | P, P,

0 3 6 30

— Waiting time for P, =6,P,=0.P;=3
— Average waiting time: (6 +0+3)/3=3
— Average Completion time: (3 + 6 + 30)/3 =13
* In second case:
— Average waiting time is much better (before it was 17)
— Average completion time is better (before it was 27)

« FCFS Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)
« Safeway: Getting milk, always stuck behind cart full of small items

Round Robin (RR)

« FCFS Scheme: Potentially bad for short jobs!
— Depends on submit order

— If you are first in line at supermarket with milk, you don’t care who jg
behind you, on the other hand... p

 Round Robin Scheme

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After quantum expires, the process is preempted
and added to the end of the ready queue

— nprocesses in ready queue and time quantumis g =
« Each process gets 1/n of the CPU time

* In chunks of at most g time units
« No process waits more than (n-1)g time units

» Performance
— qglarge = FCFS
— g small = Interleaved
— g must be large with respect to context switch, otherwise overhead is
too high (all overhead)

Example of RR with Time Quantum = 20

° Example: Process Burst Time Remaining Time
P, 53 53
P, 8 8
P, 68 68
P, 24 24

— The Gantt chart is:

Example of RR with Time Quantum = 2@

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 8
P, 68 68
P, 24 24

— The Gantt chart is:

P1
0 20

Example of RR with Time Quantum

o E)%%p'@ Process Burst Time Remaining Time
1

P, 53 33
P, 8 0
P, 68 68
P, 24 24

— The Gantt chart is:

Example of RR with Time Quantum

o E)%%p'@ Process Burst Time Remaining Time
1

P, 53 33
P, 8 0
P, 68 48
P, 24 24

— The Gantt chart is:

P, I[P, |P,
O 20 28 48

Example of RR with Time Quantum = £@%

° Example: Process Burst Time Remaining Time
P, 53 33
P, 8 0
P, 68 48
P, 24 4

— The Gantt chart is:

P, |P, [Py |Ps
O 20 28 48 68

Example of RR with Time Quantum = £@%

° Example: Process Burst Time Remaining Time
P, 53 13
P, 8 0
P, 68 48
P, 24 4

— The Gantt chart is:

Py [P, |[Ps |Ps [Py
O 20 28 48 68 88

Example of RR with Time Quantum = %82

° Example: Process Burst Time Remaining Time
P, 53 13
P, 8 0
P, 68 o8
P, 24 4

— The Gantt chart is:

P, |P, (P, [P, [P, |P,
O 20 28 48 68 88 108

Example of RR with Time Quantum

o Example: Process Burst Time Remaining Time
P, 53 0
P, 8 0
P, 68 0
P, 24 0

— The Gantt chart is:

0O 20 28 48 68 88 108 112 125 145 153
— Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
— Average waiting time = (72+20+85+88)/4=66 4
— Average completion time = (125+28+153+112)/4 = 1042

 Thus, Round-Robin Pros and Cons:

— Better for short jobs, Fair (+)
— Context-switching time adds up for long jobs (-)

Round-Robin Discussion

* How do you choose time slice?

— What if too big?
* Response time suffers

— What if infinite () ?
* Get back FCFS/FIFO

— What if time slice too small?
» Throughput suffers!

* Actual choices of timeslice:

— Initially, UNIX timeslice one second:
« Worked ok when UNIX was used by one or two people.

« What if three compilations going on? 3 seconds to echo
each keystroke!

— In practice, need to balance short-job performance
and long-job throughput:
 Typical time slice today is between 10ms — 100ms
 Typical context-switching overhead is 0.1ms — 1ms
* Roughly 1% overhead due to context-switching

Comparisons between FCFS and Round Robin

« Assuming zero-cost context-switching time, is =
RR always better than FCFS?

° Slmple example: 10 jobs, each takes 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

FCFS| P1 P2 P9 P10
0 100 200 800 900 1000
RR
0 10 20 980 990 1000
Job # FIFO RR 991 999
« Completion Tim{— 190 | 991
2 200 992
* FIFO average 5|—-
9 900 999
10 1000 1000

 RR average 9950

Comparisons between FCFS and Round Robin

BP0 ZEIR SR CopigEiguiching tme, i

« Simple example: L0 jobs, each takes 100s ofSCPU time

scheduler quantum of 1
All jobs start a’ﬂthe same time

FCFS| P1 P2 P9 P10
0 100 200 800 900 1000
RR
0 10 20 980 990 1000
 Both RR and FCFS finish at the same time 991 999

« Average response time is much worse under RR!
— Bad when all jobs same length

' @ﬁggﬁtﬁcﬁﬁ"?SS‘%%Q%“S%bfeigﬁéﬁ‘%obgévéﬁejgbavvnh

— Total time for RR longer even for zero-cost switch!

Earlier Example with Ditferent Time
Quantum

| Py [Py P, P,
Best FCFS: [8] [24] [53] [68]
0O 8 32 85 153
Quantum P, P, P, P, Average
Best FCFS 32 0 85 8 31"
Wait
Time
Best FCFS 85 8 153 32 6972
Completion

Time

Earlier Example with Ditferent Time

Quantum
. 2 P, P, P,
Worst FCFS: [68] [53] [24] [8]
0 68 121 145 153
Quantum P, P, P, P, Average
Best FCFS 32 0 85 8 31Va
Wait
Time
Worst FCFS | 68 145 0 121 8314
Best FCFS 85 8 153 32 6914
Completion
Time
Worst FCFS 121 153 68 145 12134

Earlier Example with Ditferent Time

Quantum
Ps P, P, P,
Worst FCFS: [68] [53] [24] [8]
0 68 121 145 153
| Quantum P. P. P. P. Average
P, |P, |Ps [Py | P, |Ps [Py |P, |Ps|Ps| P, |Ps|P,|Ps|P, [Py |P, [Py |Ps|Ps
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 133 141149153
%‘.’a“ Q=8 ~* [s0 8 85 56 574
Ime
Q=10 /|82 10 85 68 61%
Q=20 [|72 20 85 88 667
Worst FCF$ | 68 145 0 121 8315
Best FCFJ |85 8 153 32 697
Q=1 [[137 |30 153 81 100
ST Q=5 j 135 |28 153 82 9915
Tirme Q=8 133 16 153 80 95%5
Q=10 135 18 153 92 995
Q=20 125 |28 153 112 104"
Worst FCFS | 121 153 68 145 12134

