162 HW2

David Culler, Arka Bhattacharya, William Liu
September 2014

Contents

1 Introduction
1.1 Setup Details e
1.2 Structure of HT'TP Request e
1.3 Structure of HTTP Response ittt e
1.4 HTTP Webserver Skeleton et s e e e
1.5 Your Assignment (~40 lines of code) L L

2 Experience with pthreads
Appendices

A [Optional] Resolving content-type
A1l Background e
A2 TImplementation (~10 lines of code)o Lo o

B [Optional] Resolving GET directory requests
B.1 Background e e
B.2 Implementation (~60 lines of code) Lo Lo

C [Optional] Ensuring user does not escape the web directory
C.1 Background
C.2 Implementation (~20 lines of code) Lo

CS 162 Fall 2014 HW :

1 Introduction

The Hypertext Transport Protocol (HTTP) is the most commonly used protocol on the Web today.
Like most network protocols, HT'TP uses the client-server model: an HTTP client opens a connection
and sends a request message to an HTTP server; the server then returns a response message, usually
containing the resource that was requested. After delivering the response, the server closes the con-
nection (making HTTP a stateless protocol, i.e. not maintaining any connection information between
transactions).

This assignment has you implement a simple HTTP server that gives you a chance to service GET
requests, play around with some HTTP response headers, add protection on the server side through the
use of processes and return error code pages. The request and response headers must comply with the
HTTP 1.0 protocol found here.

The appendices provide some examples of how you could extend this simple HTTP web server.
Implementing those extensions are optional (you could turn them in for epsilons).

Pull the skeleton code from the staff repository.

git pull staff master
cd hw2

1.1 Setup Detalils

Background : Currently your vagrant virtual machine is set up to be on an internal private network
accessing the outside network through a Virtual Box NAT implementation. This allows network connec-
tions to originate in your virtual machine, but prevents connections that originate outside to connect to
your virtual machine. Thus, if you run your http server on your virtual machine, it will not be able to
access connections from any client on the internet, not even your host operating system.

One solution is to set up port forwarding on your Virtual Box implementation. Once port forwarding
is set up, Virtual Box listens to all packets received on that port on the host operating system, and
forwards those packets to the virtual machine on the specified port.

Enabling Port Forwarding : To set up port forwarding, open the Virtual Box graphical user interface
where all your virtual machines are listed. Choose the settings option of your virtual machine, and go to
the ”Network” pane. You will find a button labeled Port Forwarding. Clicking that button will open
a dialog box where you can specify the port mapping from your host operating system to your guest
operating system. For example, if you map port 50000 on your host machine to port 55000 on your
guest machine, you can run your HTTP server on port 55000 on your guest machine, and you would
send it packets at the address 127.0.0.1:50000.

Another way to enable Port Forwarding: You can also enable port forwarding by changing your
Vagrantfile. Follow the instructions specified here.

1.2 Structure of HTTP Request

The format of a HTTP request message is as follows: an initial request line, zero or more header lines, a
blank line (i.e. a CRLF by itself). Given below is a HTTP request message sent by the Google Chrome
browser to a HTTP web server running on the local machine (127.0.0.1) on port 50000 :

GET /hello.html HTTP/1.0\r\n

Host: 127.0.0.1:50000\r\n

Connection: keep-alive\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n

http://www.w3.org/Protocols/HTTP/1.0/spec.html
https://docs.vagrantup.com/v2/networking/forwarded_ports.html

CS 162 Fall 2014 HW :

User-Agent: Chrome/37.0.2062.94\r\n
Accept-Encoding: gzip,deflate,sdch\r\n
Accept-Language: en-US,en;q=0.8\r\n
\r\n

Header lines provide information about the request or response, or about the object sent in the
message body! . Here are some example header fields:

Host: gives the IP address and port number of the host where the resource exists.

User-Agent: identifies the program that’s making the request, in the form ”Program-name/x.xx”,
where x.xx is the (mostly) alphanumeric version of the program. In the above example, the Google
Chrome browser sets User-Agent as Chrome/37.0.2062.94.

1.3 Structure of HTTP Response

A HTTP web server responds as follows:

HTTP/1.0 200 OK\r\n
Content-Type: text/html\r\n
\r\n

<html>

<body>

<hi1>Hello World</hi>
Let’s see if this works
<p>

WOWOW

</body>

</html>

The HTTP response has two parts — the response headers and the message-body. The first line of
the response header is called the status line, also has three parts separated by spaces: the HT'TP version,
a response status code that gives the result of the request, and an English reason phrase describing the
status code. Typical status lines might be HTTP/1.0 200 OK (as in our example above), HTTP/1.0 404
Not Found, etc.

The status code is a three-digit integer, and the first digit identifies the general category of response:

1xx indicates an informational message only
2xx indicates success of some kind

3xx redirects the client to another URL
4xx indicates an error on the client’s part
5xx indicates an error on the server’s part

Some example response headers are as follows:
Content-Type: gives the MIME-type of the data in the body, such as text/html or text/plain.
Content-Length: gives the number of bytes in the body.?

1.4 HTTP Webserver Skeleton

From a network standpoint, your HT'TP web server should implement the following logic:

I To get a deeper understanding, open the web developer view on your favorite browser and look at the header sent
when you request any webpage
2In this assignment, you do not have to implement the Content-Length header field for an HTTP response.

CS 162 Fall 2014 HW :

Create a listening socket

Accept a connection with it

Obtain a new connection socket

Fork a child process to service the new connection socket

Parent process goes back to accept more connections on the original socket
Child Process reads in the HTTP request header

Child Process sends the appropriate HTTP response header

Child sends the entity requested (e.g. an HTML document), or an error message.

P NSO W

Currently, the skeleton code does the first five steps listed above. It implements a web server which
responds to all connections by echoing the request to the client with the header Content-Type set to
text/plain. A majority of the networking steps are done for you in the function: server(int portno).

1.5 Your Assignment (~40 lines of code)

1. Replace the echo logic currently in proces_http_request(int httpsockfd) to implement a
buffered reader to service GET requests only. Read the requested resource and send it over the
socket. Your response headers should contain the appropiate status line and the field Content-Type
set to text/html. You do not need to implement any other HIT'TP header. Keep in mind that
resources specified in the GET request should be treated as a pathname relative to the www directory
in hw2 (i.e. the request 127.0.0.1:50000/hello.html should resolve to hw2/www/hello.html on your
virtual machine). Close the connection socket to the client once you have served a request.

2. If it is not a GET request, return a 400 Bad Request error. Construct the header in the correct
format % and use the 400.html file in the hw2 folder as the message-body. If the document is not
found, return a 404 Not Found error in the same manner (construct the header yourself and send
404 .html in the hw2 folder as the message-body.

Check that your webserver works by making HTTP requests from your favorite browser. For
instance, below is a screenshot when Safari sends a GET request for hello.html (which exists) on
a webserver running on port 40000.

e06 127.0.0.1:40000/hello.html

[« >] (2] [+] 127.0.0.1:40000 ¢ [LReader (O]

Hello World

Let's see if this works

WOWOwW

3as specified in the HT'TP spec

http://www.w3.org/Protocols/HTTP/1.0/spec.html#Response
http://www.w3.org/Protocols/HTTP/1.0/spec.html#Response

CS 162 Fall 2014 HW :

Push your code to the autograder branch ag/hw2 on github.

git add .

git commit -m "Implemented http web server"
git push personal master

git checkout -b ag/hw2

git push personal ag/hw2

Push the final code release to the branch release/hw2 on github.

git add .

git commit -m "hw2 submission"
git push personal master

git checkout -b release/hw2
git push personal release/hw2

2 Experience with pthreads

We will be providing some additional exercises soon to give you a chance to get experience with thread
programming, but these will not need to be turned in for grading.

CS 162 Fall 2014 HW :

Appendices

There are several things you could do to make your http server more robust and more complete. Feel
free to extend it. The appendix provides a few example developments that you could try. Feel free to
turn these in for epsilons.

A [Optional] Resolving content-type

A.1 Background

The HTTP server can provide a client (e.g, a browser) with hints on how to interpret the content of the
webpage returned. Suppose that the server returns the following content.

<html>
<body>
 Bold letters
</body>
</html>

The web browser can interpret this content as either plain text, in which case it display the following
on the browser screen :

<html>
<body>
 Bold letters
</body>
</html>

However, if the browser interprets this content as html text, it would simply display :

Bold Letters.

A.2 Implementation (~10 lines of code)

Change the Content-Type field in your HT'TP response to specify whether a returned file should be
interpreted as a ’'plain text’ or an "html’ file. You may assume that files to be interpreted as "html’ ends
in .html. All other files should be interpreted as text files.

B [Optional] Resolving GET directory requests
B.1 Background

In this section we shall deal with the case when a user’s requested resource evaluates to a directory
instead of a file on the web-server.

Example: Suppose the www folder in your homework folder hw2 has a sub-directory dir, which has two
files testl.html and test2.html. What happens when the client makes a request 127.0.0.1:50000/dir/
?

There can be multiple ways of handling this case — but we shall be implementing one specific method.

CS 162 Fall 2014 HW :

B.2 Implementation (~60 lines of code)

If the requested directory has an index.html file, then web-server should return this index file. If,
however, the requested directory does not contain an index.html file, the web-server should return a
webpage listing all the files (and sub-directories) in that directory.

C [Optional] Ensuring user does not escape the web directory

C.1 Background

The web server you have implemented till now has a security flaw. A malicious client might use various
escape characters in her resource request to obtain restricted files on the webserver. A user might make
arequest GET ../../etc/apache2/apache2.conf to escape out of the www folder and find out the exact
configurations of your apache server.

C.2 Implementation (~20 lines of code)

Your webserver should ensure that a malicious user cannot escape the directory which stores your
webpages (www). Your webserver should only return pages which are contained within the www directory
or in its sub-tree in the file system. If a GET request tries to request a resource which is outside the
directory structure of www, you should return a 403 Forbidden error message. Again, construct the
header for the 403 Forbidden response yourself, and return the contents of 403.html as the message
body.

Push your final release code to release/hw2

	Introduction
	Setup Details
	Structure of HTTP Request
	Structure of HTTP Response
	HTTP Webserver Skeleton
	Your Assignment (40 lines of code)

	Experience with pthreads
	Appendices
	[Optional] Resolving content-type
	Background
	 Implementation (10 lines of code)

	[Optional] Resolving GET directory requests
	Background
	 Implementation (60 lines of code)

	[Optional] Ensuring user does not escape the web directory
	Background
	 Implementation (20 lines of code)

