Network security (DNS caching
and DoS)

CS 161: Computer Security
Prof. Raluca Ada Popa

Slides adapted from David Wagner

DNS Overview
* DNS translates www.google.com to 74.125.25.99

* It's a performance-critical distributed database.

* DNS security is critical for the web.

* Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

DNS Overview
* DNS translates www.google.com to 74.125.25.99

* It's a performance-critical distributed database.

* DNS security is critical for the web.

* Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

» Security risks: friend might be malicious,
communication channel to friend might be insecure,
friend might be well-intentioned but misinformed

DNS Lookups via a Resolver

Host at xyz .poly.edu
wants IP address for

eecs.mit.edu

local DNS server

(resolver)
dns.poly.edu

Caching heavily
used to minimize
lookups

client(requesting

root DNS server (‘)

2
3
/ TLD (top-level domain) DNS
4

1

2

xyz.poly.edu

r

host

\
@ eecs.mit.edu

server (“.edu’)

authoritative DNS server
(for ‘mit.edu’)
dns.mit.edu

Security risk #1: malicious DNS server

« Of course, if any of the DNS servers queried are
malicious, they can lie to us and fool us about the
answer to our DNS query

Security risk #2: on-path attacker

* |f attacker can eavesdrop on our traffic...
we’re hosed.

 Why? We'll see why.

Security risk #3: off-path attacker

o |f attacker can’t eavesdrop on our traffic, can he
inject spoofed DNS responses?

* Yes. This case is especially interesting, so we’ll look
at it in detall.

DNS Threats

« DNS: path-critical for just about everything we do
—Maps hostnames < IP addresses

—Design only scales if we can minimize lookup traffic
o #1 way to do so: caching

o #2 way to do so: return not only answers to queries, but additional
info that will likely be needed shortly

* What if attacker eavesdrops on our DNS queries?
— Then similar to DHCP/TCP, can spoof responses

« Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how the protocol functions

* Directly interacting w/ DNS: dig program on Unix

— Allows querying of DNS system
—Dumps each field in DNS responses

dig eecs.mit.edu A

.
4

.
4

7

global options: +cmd
Got answer:
->>HEADER<L<- opcode: QUERY,

status:

+ <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

NOERROR,

id: 19901

flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

QUESTION SECTION:

;eecs.mit.edu.

e o
r 7

ANSWER SECTION:

eecs.mit.edu. 21600

e o
r 7

AUTHORITY SECTION:

mit.edu. 11088
mit.edu. 11088
mit.edu. 11088

e o
r 7

ADDITIONAL SECTION:

STRAWB.mit.edu. 126738
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738

IN

IN

IN
IN
IN

IN
IN
IN

NS
NS
NS

i

18.62.1.6

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

o o
=7

7

global options: +cmd
Got answer:
->>HEADER<L<- opcode: QUERY,

status:

+ <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

NOERROR,

id: 19901

flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

QUESTION SECTION:

reecs.mit.edu.

e o
r 7

ANSWER SECTION:

eecs.mit.edu. 21600

e o
r 7

AUTHORITY SECTION:

mit.edu. 11088
mit.edu. 11088
mit.edu.

e o
r 7

ADDITIONAL SECTION:

STRAWB.mit.edu. 126738
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738

IN

IN

IN

IN

IN
IN

NS
NS

i

18.62.1.6

BITSY.mit.edu.
W20NS.mit.edu.
RAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, (id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;» ANSWER SECTION:
eecs.mit.edu. 2160

; ; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;, ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A 18.71.0.151
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd

;; Got answer:

; ;» —>>HEADER<<- opcode

;; flags: qr rd ra; QU TONAL:

;; QUESTION SECTION:

;eecs.mit.edu. IN A

:; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.
;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A 18.71.0.151
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecs.mit.edu A

.
4

.
4

7

global options: +cmd
Got answer:
->>HEADER<L<- opcode: QUERY,

QUESTION SECTION:

;eecs.mit.edu.

e o
r 7

ANSWER SECTION:

eecs.mit.edu. 21600

e o
r 7

AUTHORITY SECTION:

mit.edu.
mit.edu.
mit.edu.

e o
r 7

ADDITIONAL SECTIOI]

STRAWB.mit.edu. 126738
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738

status:

IN

IN

IN
IN
IN

+ <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

NOERROR,
flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY:

i

id:

18

18
18
18

19901
3, ADDITIONAL:

.62.1.6

.71.0.151
.72.0.3
.70.0.160

dig eecs.mit.edu A

7

; <<>> DiG 9.6.0-API

global options: +cn
Got answer:

;; ->>HEADER<<- opcode /'0Siname
;; flags: qr rd ra; QU

;; QUESTION SECTION:
;eecs.mit.edu.

;» ANSWER SECTION:
eecs.mit.edu. 21600
;S AUTHORITY SECTION:

mit.edu. 11088
mit.edu. 11088
mit.edu. 11088
;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738

IN

IN
IN
IN

IN
IN
IN

2

NS
NS
NS

i

18.62.1.6

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu:

18.71.0.151
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd

;; Got answer:

;;» —>>HEADER<<- opcode:

QUERY,

status:

NOERROR,

id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

;; QUESTION SECTION:
;eecs.mit.edu.

;; ANSWER SECTION
eecs.mit.edu.

;; AUTHORITY SECTION:
mit.edu.
mit.edu.
mit.edu.

; ~ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

11088
11088
11088

126738
166408
126738

IN
iN
IN

IN
IN
IN

NS
NS
NS

i

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

DNS Protocol

Lightweight exchange
of query and reply
messages, both
with same message
format

Primarily uses UDP
for its transport
protocol, which is
what we’ll assume

Frequently, both
clients and servers
use port 53

UDP Header

UDP Payload

SRC port

DST port

checksum

length

DNS Protocol

Lightweight exchange
of query and reply
messages, both
with same message
format

Primarily uses UDP
for its transport
protocol, which is
what we’ll assume

Frequently, both
clients and servers
use port 53

UDP Header

UDP Payload

SRC=53

DST=53

checksum

length

DNS Protocol, cont.

Message header:

* |dentification: 16 bit # for
query, reply to query_uses
same #

« Along with repeating the
Question and providing
Answer(s), replies can include
“Authority”_(name server
responsible for answer) and
“Additional” (info client is
likely to look up-soon anyway)

« Each Resource Record has-a
Time To Live (in seconds) for
caching (not shown)

IP Header
16 bits 16 bits
SRC=53 DST=563
checksum length
{ Identification | Flags
Questions # Answer RRs
Authority RRs # Additional RRs

Questions
(variable # of resource records)

Answers
(variable # of resource records)

q Authority)
(variable # of resource records)

Additional information

(variable # of resource records)

dig eecs.mit.edu A

; ;5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd

;; Got answer:
;;» —>>HEADER<<- opcode:

;; flags: qr rd ra; QUERY:

;; QUESTION SECTION:
;eecs.mit.edu.

;» ANSWER SECTION:
eecs.mit.edu.

;; AUTHORITY SECTION:
mit.edu.
mit.edu.
mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

QU

01

What if the mit.edu server | apprrroNar,-
Is untrustworthy? Could
its operator steal, say, all
of our web surfing to

berkeley.edu’s main web

1.6

21

server?
11088 IN
11088 IN
11088 IN
126738 1IN
166408 1IN
126738 1IN

NS
NS
NS

i

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

;3 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;;» —>>HEADER<<- opcode:

QUERY, status: NOERROR, id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

;; QUESTION SECTION:
;eecs.mit.edu.

;» ANSWER SECTION:
eecs.mit.edu.

;; AUTHORITY SECTION:
mit.edu.
mit.edu.
mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

Let’s look at a flaw in the
original DNS design
(since fixed)

21600 IN A 18.62.1.6
11088 IN NS BITSY.mit.edu.
11088 IN NS W20NS.mit.edu.
11088 IN NS STRAWB.mit.edu.
126738 1IN A 18.71.0.151
166408 1IN A 18.72.0.3
126738 1IN A 18.70.0.160

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

.eecs.mit.edu. What could happen if the mit.edu server

returns the following to us instead?

;» ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

; ; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www .berkeley.edu.

;; ADDITIONAL SECTION:

www .berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.

We'd dutifully store in our cache a mapping of
.. ANSWER SECTION: |Wwww.berkeley.edu toan IP address under
eecs.mit.edu. MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

; ; AUTHORITY SECTION:

mit.edu. 11088 BITSY.mit.edu.
mit.edu. 11088 W20NS.mit.edu.
mit.edu. www .berkeley.edu.

Iy SECTION~

.berkeley.edu 30 IN A
BITSY.mit.edu. 166408 1IN A .12.0.
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecs.mit.edu A

; ;5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd

;; Got answer:

;;» —>>HEADER<<- opcode:

;; QUESTION SECTION:
;eecs.mit.edu.

;» ANSWER SECTION:
eecs.mit.edu.

;; AUTHORITY SECTION:
mit.edu.
mit.edu.
mit.edu.

;; ADDITIONAL SECTION:
www .berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

QUERY, status: NOERROR,
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

TAT a

id: 19901

In this case they chose to make the

mapping disappear after 30 seconds.
They could have made it persist for 6
weeks, or disappear even quicker.

NS
NS
NS

IN
166408 1IN A
126738 1IN A

BITSY.mit.edu.
W20NS.mit.edu.
www .berkeley.edu.

18.6.6.6
18.72.0.3
18.70.0.160

3

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

; » ANSWER SECTIO

eecs.mit.edu. How do we fix such DNS cache poisoning?
;» AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www .berkeley.edu.

;; ADDITIONAL SECTION:

www .berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecsimit.edwA

;3 <<>> DiG 9/6.0-APPLE-P2 <<>> eecs.mit.edu a

77 global opticns: +9 Don't accept Additional records unless

;; Got answer:

:; ->>HEADER<<- opcod theyre for the domain we're looking up

;; flags: qr rd ra; Q E.g., looking up eecs.mit.edu = only accept
additional records from *.mit.edu

;; QUESTION SECTION:

jeecs.mit.edu, No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

; » AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www .berkeley.edu.
;; ADDITIONAT., SECTION:

www.Berkeley edu- —S N —A— 18.6.6.6
BITSY.mit.edu. 166408 1IN A 18.72.0.3

W20NS.mit.edu. 126738 1IN A 18.70.0.160

Security risk #1: malicious DNS server

« Of course, if any of the DNS servers queried are
malicious, they can lie to us and fool us about the
answer to our DNS query...

« and they used to be able to fool us about the
answer to other queries, too, using cache
poisoning. Now fixed (phew).

Security risk #2: on-path eavesdropper

* |f attacker can eavesdrop on our traffic...
we’re hosed.

* Why?

Security risk #2: on-path eavesdropper

* |f attacker can eavesdrop on our traffic...
we’re hosed.

« Why? They can see the query and the 16-bit
transaction identifier, and race to send a spoofed
response to our query.

Security risk #3: off-path attacker

o |f attacker can’t eavesdrop on our traffic, can he
inject spoofed DNS responses?

* Answer: It used to be possible, via blind spoofing.
We've since deployed mitigations that makes this
harder (but not totally impossible).

Blind spoofing

16 bits 16 bits
SRC=53 DST=53
checksum length
e Say we look up
mail.google.com; how can an |__!dentification Flags
off-path attacker feed us a faQuestichs # Answer RRs
bogus A answer before the # Authority RRs | # Additional RRs
It =Y Questions
Iegltlmate server replles ' (variable # of resource records)
Answers
° HOW can SUCh a remote ariable # of resource record
attacker even know we are A

(variable # of resource records)

looking up mail.google.com?

Additional information
(variable # of resource records)

Suppose, e.g., we visit a web
page under their control:

... ...

Blind spoofing

e Say we look up
mail.google.com; how can

an off-path attacker feed us a
bogus A answer before the
leqgitir] This HTML snippet causes our
browser to try to fetch an image from
e How (mail.google.com. To do that, our
even | browser first has to look up the IP
mail|address associated with that name.

Suppose, e.g., we vis;j/web
|:

page under their contr

... ...

Fix?

Blind spoofing

16 bits 16 bits
Once they know we’re looking SRC=53 DEi=ae
it up, they just have to guess checksum length
the Identification field and reply === =
before Ieglt Server. # Questions # Answer RRs
Authority RRs # Additional RRs

How hard is that?

Questions
(variable # of resource records)
Tol I i I I Answers
erglnally, identification field (variable # of resource records)
incremented by 1 for each Rthorty
request_ How does attacker (variable # of resource records)
guess it? Additional information

(variable # of resource records)

 * Theyobserve D khere
* Sothiswilbe k+1

@b@ 16 bits
DNS Blind Spoofing, cont. RC-53 SeTo53
. checksum length
Once we randomize the —
|dentification, attacker has a) - e Flags
1/65536 chance of guessing it faduestions # Answer RRs
correctly. # Authority RRs | # Additional RRs
Are we pretty much safe? _Questions
(variable # of resource records)
Answers
Attacker can send /ots of replies, (variable # of resource records)
not just one ... Authority

(variable # of resource records)

Additional information

However: once reply from legit (variable # of resource records)
server arrives (with correct
|dentification), it's cached and
no more opportunity to poison it.
Victim is innoculated!

Unless attacker can send
1000s of replies before legit
arrives, we're likely safe —
phew! ?

Summary of DNS Security Issues

* DNS threats highlight:

— Attackers can attack opportunistically rather than

eavesdropping

o Cache poisoning only required victim to look up some name
under attacker’ s control (has been fixed)

— Attackers can often manipulate victims into vulnerable

activity
o E.g., IMG SRC in web page to force DNS lookups

— Crucial for identifiers associated with communication
to have sufficient entropy (= a lot of bits of
unpredictability)

— “Attacks only get better”: threats that appears
technically remote can become practical due to
unforeseen cleverness

Common Security Assumptions

* (Note, these tend to be pessimistic ... but prudent)

 Attackers can interact with our systems without
particular notice
— Probing (poking at systems) may go unnoticed ...

— ... even if highly repetitive, leading to crashes, and easy
to detect

* It's easy for attackers to know general information
about their targets

— OS types, software versions, usernames, server ports, IP
addresses, usual patterns of activity, administrative
procedures

Common Assumptions

* Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

* Attackers can make energetic use of automation
— They can often find clever ways to automate

* Attackers can pull off complicated coordination
across a bunch of different elements/systems

 Attackers can bring large resources to bear if
needed

— Computation, network capacity
— But they are not super-powerful (e.g., control entire ISPs)

The Kaminsky Blind Spoofing
Attack

@b@ 16 bits
DNS Blind Spoofing, cont. RC-53 SeTo53
. checksum length
Once we randomize the —
|dentification, attacker has a) - e Flags
1/65536 chance of guessing it faduestions # Answer RRs
correctly. # Authority RRs | # Additional RRs
Are we pretty much safe? _Questions
(variable # of resource records)
Answers
Attacker can send /ots of replies, (variable # of resource records)
not just one ... Authority

(variable # of resource records)

Additional information

However: once reply from legit (variable # of resource records)
server arrives (with correct
|dentification), it's cached and
no more opportunity to poison it.
Victim is innoculated!

Unless attacker can send
1000s of replies before legit
arrives, we're likely safe —
phew! ?

DNS Blind Spoofing (Kaminsky 2008)

* Two key ideas:

— Attacker can get around caching of legit replies by
generating a series of different name lookups:

— Trick victim into looking up a domain you don't care
about, use Additional field to spoof the domain you do
care about

Kaminsky Blind Spoofing

For each lookup of randomk . google. com,
attacker spoofs a bunch of records like this,
each with a different Identifier

;; QUESTION SECTION:

;random7 .google.com. IN A

;» ANSWER SECTION:
random7 .google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

RARACEEONALS Bl
‘mail.google.com 126738 1IN A 6.6.6.6

Once they win the race, not only have they poisoned
mail.google.com ...

Kaminsky Blind Spoofing

For each lookup of randomk . google. com,
attacker spoofs a bunch of records like this,
each with a different Identifier

;; QUESTION SECTION:

qﬂiﬁiEéZ@om.

;random7 .google.com. IN A
; » ANSWER SECTION:
random7 .google.com 21600 IN A doesn’t matter
;» AUTHORITY SECTION:
11088 1IN NS mail. google@
;; ADDITIONAL SECTION:
126738 1IN A 6.6.6.6

mail.google.com

Once they win the race, not only have they poisoned
mail.google.com ... but also the cached NS record for
google.com’s name server — so any future
X.google.comlookups go through the attacker’'s machine

Defending Against Blind Spoofing

Central problem: all that tells a (6 bits 16 bits

client they should accept a

: . SRC=53 DST=53
response is that it matches the
|dentification field. checksum length
_ _ _ Identification Flags
With Only 16 bItS’ it lacks # Questions # Answer RRs

sufficient entropy: even if truly
random, the search space an

Authority RRs # Additional RRs

Questions

attacker must brute force is too (variable # of resource records)
small. Answers
(variable # of resource records)
Authority
Where can we get more (variable # of resource records)
entropy? (Without requiring a Additional information

prOtOCO| Change_) (variable # of resource records)

Defending Against Blind Spoofing

Total entropy: 16 bits

For requestor to receive DNS 16 bits 16 bits

reply, needs both correct

|dentification and correct ports.

checksum length
On a request, DST port = 93. C Identification Flags
SRC port usually also 53 — but P YT

not fundamental, just convenient. # Authority RRs | # Additional RRs

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information
(variable # of resource records)

Defending Against Blind Spoofing

Total entropy: ? bits

“Fix”: client uses random
, 16 bits 16 bits
source port = attacker doesn't

know correct dest. port to use in

reply checksum length
] Identification Flags
Questions # Answer RRs

Authority RRs # Additional RRs

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information
(variable # of resource records)

Defending Against Blind Spoofing

Total entropy: 32 bits

“Fix”: client uses random

’ 16 bit. 16 bit
source port = attacker doesn'’t — Z
know correct dest. port to use in
reply checksum length
32 bits of entropy makes it N o ies ey Flags
orders of magnitude harder for i BT # Answer RRs
attacker to guess all the # Authority RRs | # Additional RRs
necessary fields and dupe victim . Questions
into accenting s OOf reSDONSEe (variable # of resource records)
n pting sp P] Answers

(variable # of resource records)

This is what primarily “secures” Authority

(variable # of resource records)

DNS against blind spoofing PV TS ——

tod ay. (variable # of resource records)

Lessons learned

« Special risks of caching and distributed systems
where information is spread across many machines

« Security risks: friend (cache) might be malicious

« Communication channel to friend (cache) might be
Insecure

* Friend (cache) might be well-intentioned but
misinformed

Denial-of-Service (DoS)

Attacks on Availability

 Denial-of-Service (DoS): preventing legitimate
users from using a computing service

* Distributed Denial-of-Service (DDoS) occurs when
a server is flooded with traffic from many different
devices

* We do though need to consider our threat model ...
—What might motivate a DoS attack?

Botnets Beat Spartan Laser on Halo 3

By Kevin Poulsen [February 4, 2009 | 12:13 pm | Categories: Cybarmageddon!

What's the most powerful weapon you can wield when playing Halo 3 online?

| know. You can control the entire map with e and a couple of sticky grefmades: that teeny-
bopper you just pwned has you beat withthe tiny botnet he leased with his allowance money.

Motivations for DoS

« Showing off / entertainment / ego

« Competitive advantage
—Maybe commercial, maybe just to win

* Vendetta / denial-of-money
 Extortion

* Political statements

* Impair defenses

* Espionage

* Warfare

KrebsonSecurity

In-depth security news and investigation

There are dozens of underground forums
where members advertise their ability to
execute debilitating “distributed denial-of-
service” or DDoS attacks for a price. DDoS
attack services tend to charge the same

prices, and for taking a

DUDE
S ArEVvVIeSB

€b site offline is surprisingly affordable:
about $5 to $10 per hour; $40 to $50 per
day; $350-$400 a week; and upwards of
,200 per month.

)) N) MOWHDIKA, KAUECTBEHHDIK » AewEeblid DDoS cepeuc!
Of course, it pays to read the fine print

before you enter into any contract. Most An ad for a DDoS attack service.

DDoS services charge varying rates

depending on the complexity of the target’s infrastructure, and how much lead time the attack
service is given to size up the mark. Still, buying in bulk always helps: One service advertised on
several fraud forums offered discounts for regular and wholesale customers.

Extortion via DDoS on the rise
By Denise Pappalardo and Ellen Messmer, Network World, 05/16/05

inals are increasingly targeting corporations with distribu
denial-of-service attacks designed not to disrupt business networks
to extort thousands of dollars from the companies.

Ivan Maksakov, Alexander Petrov and Denis Stepanov were accused of
receiving $4 million from firms that they threatened with cyberattacks.

The trio concentrated on U.K. Internet gambling sites, according to the
prosecution. One bookmaker, which refused to pay a demand for
$10,000, was attacked and brought offline--which reportedly cost it more

than $200,000 a day in lost business.

DDoS makes a phishing e-mail look real

8 Posted by Munir Kotadia @ 12:00 —.) 0 comments

Just as Internet users learn that clicking on a link in an e-mail purporting to
come from their bank is a bad idea, phishers seem to be developing a new
tactic -- launch a DDoS attack on the Web site of the company whose
customers they are targeting and then send e-mails "explaining” the outage
and offering an "alternative™ URL.

November 17th, 2008

Anti fraud site hit by a DDoS attack

Posted by Dancho Danchev @ 4:01 pm

Categorles: Eotnets, Denlal of Service (DoS), Hackers, Malware, Pen testing...
Tags: Security, Cybercrime, DDo%5, Fraud, Bobbear...

2d) 9 TalkBacks -2 & | = & P +2

ADD YOUE QFIHIOR SHARE FRIMT E-HMAIL WORETHWHILET 4 WwaTE=

The popular British anti-fraud site

~-~ | Bobbear.co.uk is currently under a DDo5S
attack (distributed denial of service attack) ,
originally launched last Wednesday, and is
continuing to hit the site with 3/4 million hits daily from hundreds of thousands
of malware infected hosts mostly based in Asia and Eastern Europe, according to
the site's owner. Targeted DDoS attacks against anti-fraud and volunteer
cybercrime fighting communities clearly indicate the impact these communities
have on the revenue stream of scammers, and with Bobbear attracting such a
high profile underground attention, the site is indeed doing a very good job.

December 8, 2010, 4:18 PM

‘Operation Payback’ Attacks Fell Visa.com

By ROBERT MACKEY

y | / ¥ 4

TARGET: WWW.VISA.COM :: FIRE
FIRE FIRE!!! WEAPONS http://bit.ly
/e6iR3X ::: SET YOUR LOICTO
irc.anonops.net ::: #DDOS #PAYBACK
#WIKILEAKS

Reply Retweet

& Anon_Operation

Operation Payback

Operation: Papback Operation:

A message posted on Twitter by a group of Internet activists announcing the start of an attack on
Visa’'s Web site, in retaliation for the company’s actions against WikiLeaks.

Last Updated | 6:54 p.m. A group of Internet activists took credit for
crashing the Visa.com Web site on Wednesday afternoon, hours after they
launched a similar attack on MasterCard. The cyber attacks, by activists who

call themselves Anonymous, are aimed at punishing companies that have acted
to stop the flow of donations to WikiLeaks in recent days.

The group explained that its distributed denial of service attacks — in which

they essentially flood Web sites site with traffic to slow them down or knock
them offline — were part of a broader effort called Operation Payback, which

Distributed Denial of Service Attacks Against
Independent Media and Human Rights Sites

Ethan Zuckerman, Hal Roberts, Ryan McGrady, Jillian York, John Palfrey*

The Berkman Center for Internet & Society at Harvard University

December 2010

9. In the past year, has your site been subjected to a denial of service attack,

meaning an attacker prevented or attempted to prevent access to your site
altogether?

| Answer | Bar Response %

1 | yes o 21 62%

2 no — 8 24%

3 notsure N 5 15%
Total 34

Row over Korean election DDoS attack heats up
Ruling party staffer accused of disrupting Seoul mayoral by-election
By John Leyden - Get more from this author

Posted in Security, 7th December 2011 09:23 GMT
Free whitepaper - IBM System Networking RackSwitch G8124

A political scandal is brewing in Korea over alleged denial of service attacks against the
National Election Commission (NEC) website.

Police have arrested the 27-year-old personal assistant of ruling Grand National Party
politician Choi Gu-sik over the alleged cyber-assault, which disrupted a Seoul mayoral by-
election back in October.

However, security experts said that they doubt the suspect, identified only by his surname
"Gong", had the technical expertise or resources needed to pull off the sophisticated attack.

Row over Korean election DDoS attack heats up

Ruling party staffer accused of disrupting Seoul mayoral by-election
By John Leyden « Get more from this author

Posted in Security, 7th December 2011 09:23 GMT

Free whitepaper - IBM System Networking RackSwitch G8124

A political scandal is brewing in Korea over alleged denial of service attacks against the
National Election Commission (NEC) website.

Police have arrested the 27-year-old personal assistant of ruling Grand National Party
politician Choi Gu-sik over the alleged cyber-assault, which disrupted a Seoul mayoral by-
election back in October.

However, security experts said that they doubt the suspect, identified only by his surname
"Gong", had the technical expertise or resources needed to pull off the sophisticated attack.

Gong continues to protest his innocence, a factor that has led opposition politicians to
speculate that he is covering up for higher-ranking officials who ordered the attack.

Democratic Party politician Baek Won-woo told The HankYoreh: “We need to determine
quickly and precisely whether there was someone up the line who ordered the attack, and
whether there was compensation.” ®

Russia accused of unleashing cyberwar
to disable Estonia

- Parliament, ministries, banks, media targeted
- Nato experts sent in to strengthen defences

August 11th, 2008

lan Traynor in Brussels

The Guardin,Trursday 17 My 2007 Coordinated Russia vs Georgia
cyber attack in progress

Posted by Dancho Danchev @ 4:23 pm

Categories: Black Hat, Botnets, Denial of Service (DoS), Governments, Hackers...
Tags: Security, Cyber Warfare, DDoS, Georgia, South Osetia...

21 62 TalkBacks ~'= & 2 | & ¢ +18

ADD YOUR OPINION SHARE FRINT E-MAIL WORTHWHILE? 24 VOTES

In the wake of the Russian-Georgian conflict, a week worth of speculations
around Russian Internet forums have finally
materialized into a coordinated cyber attack
against Georgia’s Internet infrastructure. The
attacks have already managed to compromise
several government web sites, with continuing
DDoS attacks against numerous other
Georgian government sites, prompting the
government to switch to hosting locations to

: J : the U.S, with Georgia’s Ministry of Foreign :
Bronze Soldier, the Soviet war memorial removed from Tallinn. Affairs undertaking a desperate step in order to disseminate real-time
Nisametdinov/AP fefimmn mbine las s i ks Dlamcmak s ek

A three-week wave of massive cyber-attacks on the small Baltic country
of Estonia, the first known incidence of such an assault on a state, is
causing alarm across the western alliance, with Nato urgently examining
the offensive and its implications.

Posted on Tuesday, August 12th, 2008 | Bookmark on del.icio.us

Georgia DDoS Attacks - A Quick Summary of
Observations
by Jose Nazario

The clashes between Russia and Georgia over the region of
South Ossetia have been shadowed by attacks on the Internet.
As we noted in July, the Georgia presidential website fell victim
to attack during a war of words. A number of DDoS attacks have

Raw statistics of the attack traffic paint a pretty intense picture.
We can discern that the attacks would cause injury to almost any
common website.

Average peak bits per second per attack 211.66 Mbps
Largest attack, peak bits per second 814.33 Mbps
Average attack duration 2 minutes
Longest attack duration 6 hour

ATLAS Peak Monitored Attack Sizes Month-By-Month (January 2009-Present)

120

105.21 100.84

100
86.53 82.61

80

60

Gbps

40
20

0
J FMAMI JASONDJ FMAMI JASONDJFMAMI JASONDJIJFMAMIJASOND

2009 2010 2011 2012

Figure 17 Source: Arbor Networks, Inc.

ATLAS Average Monitored Attack Sizes Month-By-Month (January 2009-Present)

20
1.8
1.6
1.4
1.2
1.0
08
0.6
0.4
0.2
0.0

1.67

Gbps

J FMAMI JASONDJ FMAMJ JASONDJFMAMI JASONDJIFMAMI I ASOND
2009 2010 2011 2012

Figure 18 Source: Arbor Networks, Inc.

Most Significant Operational Threats

80% B DDoS attacks towards your customers
0% B Infrastructure outages due to failure/misconfiguration
Botted/compromised hosts on your network

»n 60% B Infrastructure outages due to DDoS
2 g
§ B DDoS attacks towards your infrastructure

50%
g | DDoS attacks towards your services
o
8 40% B New vulnerabilities
0; % Zero-day exploits
g 30% %, Under-capacity for bandwidth
> "
D0 20% % Hacktivism

% Other
10%
0%

Figure 6 Source: Arbor Networks, Inc.

7~ GITHUB ATTACK PERPETRATED BY CHINA’S GREAT CANNON
= TRAFFIC INJECTION TOOL

- T) s “{ * VA,
e R e gy 0, o SR D N

Brian Donohue

Chinese attackers used the Great Firewall's offensive sister-system, named the Great
Cannon, to launch a recent series of distributed denial of service attacks targeting the
anti-censorship site, GreatFire.org, and the code repository, Github, which was hosting
content from the former.

Attacks on Availability

* Deny service via a program flaw (“*NULL")

—E.g., supply an input that crashes a server
—E.g., fool a system into shutting down

* Deny service via resource exhaustion
(“while(1);")
—E.g., consume CPU, memory, disk, network

* Network-level DoS vs application-level DoS

DoS & Operating Systems

* How could you DoS a multi-user Unix system on which
you have a login?

DoS & Operating Systems

* How could you DoS a multi-user Unix system on which

you have a login?
— char buf[1024];
int f = open("/tmp/junk");
while (1) write(f, buf, sizeof(buf));
o Gobble up all the disk space!
—while (1) fork();
o Create a zillion processes!
— Create zillions of files, keep opening, reading, writing, deleting
o Thrash the disk
— ... doubtless many more

 Defenses?

DoS & Operating Systems

* How could you DoS a multi-user Unix system on which

you have a login?
— char buf[1024];
int f = open("/tmp/junk");
while (1) write(f, buf, sizeof(buf));
o Gobble up all the disk space!
—while (1) fork();
o Create a zillion processes!
— Create zillions of files, keep opening, reading, writing, deleting
o Thrash the disk
— ... doubtless many more

» Defenses?
— Isolate users / impose quotas

Network-level DoS

« Can exhaust network resources by
— Flooding with lots of packets (brute-force)
—DDoS: flood with packets from many sources

— Amplification: Abuse patsies who will amplify your traffic for
you

DoS & Networks

* How could you DoS a target’s Internet access?
—3Send a zillion packets at them

— Internet lacks isolation between traffic of different
users!

* What resources does attacker need to pull this
off?

— At least as much sending capacity (“bandwidth”) as
the bottleneck link of the target’'s Internet connection
o Attacker sends maximum-sized packets

— Or: overwhelm the rate at which the bottleneck router
can process packets

o Attacker sends
« (in order to maximize the packet arrival rate)

Defending Against Network DoS

« Suppose an attacker has access to a beefy system with
high-speed Internet access (a “big pipe”).

* They pump out packets towards the target at a very high
rate.

« What might the target do to defend against the
onslaught?
— Install a network filter to discard any packets that arrive with

attacker’s IP address as their source
oE.g.,drop * 66.31.1.37:*% => *:*

o Or it can leverage any other pattern in the flooding traffic that’'s not
in benign traffic

— Attacker’s |IP address = means of identifying misbehaving user

Filtering Sounds Pretty Easy ...

e ... but DoS filters can be easily evaded:

— Make traffic appear as though it's from many hosts
o Spoof the source address so it can’t be used to filter
« Just pick a random 32-bit number of each packet sent
o How does a defender filter this?

- Best they can hope for is that operators around the world
implement anti-spoofing mechanisms (today about 75% do)

—Use many hosts to send traffic rather than just one
o Distributed Denial-of-Service = DDoS (“dee-doss”)
o Requires defender to install complex filters

o How many hosts is “enough” for the attacker?
- Today they are very cheap to acquire ... -(

It’s Not A “Level Playing Field”

* When defending resources from exhaustion,
need to beware of asymmetries, where
attackers can consume victim resources with
little comparable effort
—Makes DoS easier to launch
— Defense costs much more than attack

* Particularly dangerous form of asymmetry:
amplification
— Attacker leverages system’s own structure to pump up
the load they induce on a resource

Amplification: Network DoS

* One technique for magnifying flood traffic:
leverage Internet’'s broadcast functionality

Amplification: Network DoS

* One technique for magnifying flood traffic:
leverage Internet's broadcast functionality

* How does an attacker exploit this?
— Send traffic to the broadcast address and spoof it

smurf | @S though the DoS victim sent it
attack |—All of the replies then go to the victim rather than the

attacker’s machine
— Each attacker pkt yields dozens of flooding pkts

* Note, this particular threat has been

— By changing the Internet standard to state routers
shouldn’t forward pkts addressed to broadcast addrs

— Thus, attacker’s spoofs won’t make it to target subnet

Amplification

« Example of amplification: DNS lookups
— Reply is generally much bigger than request

o Since it includes a copy of the reply, plus answers etc.

— Attacker spoofs DNS request to a patsy DNS
server, seemingly from the target

o Small attacker packet yields large flooding packet
o Doesn'’t increase # of packets, but total volume

* Note #1: these examples involve

— So for network-layer flooding, generally only works for
UDP-based protocols (can’t establish TCP conn.)

* Note #2: victim doesn’t see spoofed source
addresses
— Addresses are those of actual intermediary systems

Transport-Level Denial-of-Service

* Recall TCP’s 3-way connection establishment
handshake

— Goal: agree on initial sequence numbers

Client (initiator) Server

Server creates state

um = v, Ack =X + 1 associated with
connection here

(buffers, timers,

counters)

ACKACk:y_,_ 7

Transport-Level Denial-of-Service

* Recall TCP’s 3-way connection establishment
handshake

— Goal: agree on initial sequence numbers

* S0 a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator) Server

Server creates state

um = v, Ack =X + 1 associated with
connection here

(buffers, timers,

counters)

AC/(;AC/(ZJ/_,_ 7

TCP SYN Flooding

« Attacker targets memory rather than network
capacity

* Every (unique) SYN that the attacker sends
burdens the target

 What should target do when it has no more
memory for a new connection?

 No good answer!
— Refuse new connection?
0 Legit new users can’t access service

old connections to make room?
o Leqit old users get kicked off

TCP SYN Flooding Defenses

* How can the target defend itself?

* Approach #1: make sure they have tons of
memory!
— How much is enough?

— Depends on resources attacker can bring to bear
(), which might be hard to know

TCP SYN Flooding Defenses

* Approach #2: bad actors & refuse their
connections
—Hard because only way to identify them is based on IP
address

o We can’t for example require them to send a password because
doing so requires we have an established connection!

— For a public Internet service, who knows which
addresses customers might come from?

— Plus: attacker can spoof addresses since they don't
need to complete TCP 3-way handshake

« Approach #3: don’t keep state! (“SYN cookies”;
only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized

* Server: when SYN arrives, rather than keeping

state locally,

* Client needs to return the state in order to
established connection

Client (initiator)

S

S+A, SegNum

“YAck=X+1’<St

ate>

Server

Do not save state

YN, SeqNuym - X here; give to client

Server only saves
State here

SYN Flooding Defense: Idealized

* Server: when SYN arrives, rather than keeping
state locally.

e Client Problem: the world isn’t so /deal’

establ _
TCP doesn't include an easy way to

add a new <State> field like this.

Client

f save state

Is there any way to get the same give to client
functionality without having to
change TCP clients?

Server only saves
CK A ck = State here

Practical Defense: SYN Cookies

* Server: when SYN arrives, encode connection
state entirely within SYN-ACK's sequence # y

encoding of necessary state, using server secret
= T (lower bits of timestamp), lower bits of HMAC (key, T, source port & IP, destination port & IP)]

* When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Client (initiator) Instead, encode it here Server

Do not create
state here

Server only creates
State here

SYN Cookies: Discussion

* lllustrates general strategy: rather than holding
state, encode it so that it is returned when
needed

* For SYN cookies, attacker must complete
3-way handshake in order to burden server
— Can’t use spoofed source addresses

* Note #1: strategy requires that you have
enough bits to encode all the state
—(This is just barely the case for SYN cookies)

* Note #2: if it's expensive to generate or check
the cookie, then it's not a win

Application-Layer DoS

* Rather than exhausting network or memory
resources, attacker can overwhelm a
service’'s processing capacity

* There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

g reddit hot new browse stats

This link runs a slooon the RIAA's server. Don't click it; that would be
Wrong. (tinyurl.com)

814 points posted 8 days ago by keyboard_user 211 comments

The link sends a request to the web server that
requires heavy processing by its “backend database”.

Algorithmic complexity attacks

 Attacker can try to trigger worst-case complexity
of algorithms / data structures

 Example: You have a hash table.
Expected time: O(1). Worst-case: O(n).

 Attacker picks inputs that cause table collisions.
Time per lookup: O(n).
Total time to do n operations: O(n"2).

« Solution? Use algorithms with good worst-case
running time.

—E.g., universal hash function guarantees that
Pr[h.(x)=h,(y)] = 1/2"b, so hash collisions will be rare.

Application-Layer DoS

« Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

* There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

» Defenses against such attacks?

* Approach #1: Only let legit users issue expensive requests
— Relies on being able to identify/authenticate them
— Note: that this itself might be expensive!

« Approach #2: Force legit users to “burn” cash

« Approach #3: massive over-provisioning ($$9)

DoS Defense in General Terms

» Defending against requires:
— Careful design and coding/testing/review

— Consideration of behavior of defense mechanisms

o E.g. buffer overflow detector that when triggered halts
execution to prevent code injection = denial-of-service

* Defending resources from can be
really hard. Requires:

— Isolation and scheduling mechanisms
o Keep adversary’s consumption from affecting others

— Reliable identification of different users

