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DNS Overview
• DNS translates www.google.com to 74.125.25.99

• It’s a performance-critical distributed database.
• DNS security is critical for the web.

• Analogy: If you don’t know the answer to a question, 
ask a friend for help (who may in turn refer you to a 
friend of theirs, and so on).



DNS Overview
• DNS translates www.google.com to 74.125.25.99

• It’s a performance-critical distributed database.
• DNS security is critical for the web.

• Analogy: If you don’t know the answer to a question, 
ask a friend for help (who may in turn refer you to a 
friend of theirs, and so on).

• Security risks: friend might be malicious, 
communication channel to friend might be insecure, 
friend might be well-intentioned but misinformed



client( requesting host)
xyz.poly.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(for ‘mit.edu’)
dns.mit.edu

78

TLD (top-level domain) DNS 
server (‘.edu’)

DNS Lookups via a Resolver

Host at xyz.poly.edu
wants IP address for 
eecs.mit.edu

Caching heavily 
used to minimize 

lookups
9



Security risk #1: malicious DNS server
• Of course, if any of the DNS servers queried are 

malicious, they can lie to us and fool us about the 
answer to our DNS query



Security risk #2: on-path attacker
• If attacker can eavesdrop on our traffic…

we’re hosed.
• Why?  We’ll see why.



Security risk #3: off-path attacker
• If attacker can’t eavesdrop on our traffic, can he 

inject spoofed DNS responses?
• Yes. This case is especially interesting, so we’ll look 

at it in detail.



DNS Threats
• DNS: path-critical for just about everything we do

– Maps hostnames Û IP addresses
– Design only scales if we can minimize lookup traffic

o #1 way to do so: caching
o #2 way to do so: return not only answers to queries, but additional 

info that will likely be needed shortly

• What if attacker eavesdrops on our DNS queries?
– Then similar to DHCP/TCP, can spoof responses

• Consider attackers who can’t eavesdrop - but still 
aim to manipulate us via how the protocol functions

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Use Unix “dig” utility to look up IP address 
(“A”) for hostname eecs.mit.edu via DNS



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

The question we asked the server



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

A 16-bit transaction identifier that enables 
the DNS client (dig, in this case) to match up 
the reply with its original request



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Answer” tells us the IP address associated 
with eecs.mit.edu is 18.62.1.6 and we can 
cache the result for 21,600 seconds



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

In general, a single Resource Record (RR) like 
this includes, left-to-right, a DNS name, a time-
to-live, a family (IN for our purposes - ignore), 
a type (A here), and an associated value



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Authority” tells us the name servers responsible for 
the answer.  Each RR (resource record) gives the 
hostname of a different name server (“NS”) for names 
in mit.edu. We should cache each record for 11,088 
seconds. 

If the “Answer” had been empty, then the resolver’s 
next step would be to send the original query to one of 
these name servers.



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Additional” provides extra information to save us from 
making separate lookups for it, or helps with bootstrapping.  

Here, it tells us the IP addresses for the hostnames of the 
name servers.  We add these to our cache.



DNS Protocol
Lightweight exchange 

of query and reply
messages, both 
with same message 
format

Primarily uses UDP 
for its transport 
protocol, which is 
what we’ll assume

Frequently, both 
clients and servers 
use port 53 Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header



DNS Protocol
Lightweight exchange 

of query and reply
messages, both 
with same message 
format

Primarily uses UDP 
for its transport 
protocol, which is 
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DNS Protocol, cont.

Message header:
• Identification: 16 bit # for 

query, reply to query uses 
same #

• Along with repeating the 
Question and providing 
Answer(s), replies can include 
“Authority” (name server 
responsible for answer) and 
“Additional” (info client is 
likely to look up soon anyway)

• Each Resource Record has a 
Time To Live (in seconds) for 
caching (not shown)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

What if the mit.edu server 
is untrustworthy?  Could 
its operator steal, say, all 
of our web surfing to 
berkeley.edu’s main web 
server?



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Let’s look at a flaw in the 
original DNS design 
(since fixed)



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088  IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu.       30    IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

What could happen if the mit.edu server 
returns the following to us instead?



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088  IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu.       30    IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

We’d dutifully store in our cache a mapping of 
www.berkeley.edu to an IP address under 
MIT’s control.  (It could have been any IP 
address they wanted, not just one of theirs.)



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088  IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu.       30    IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

In this case they chose to make the 
mapping disappear after 30 seconds.  
They could have made it persist for 
weeks, or disappear even quicker.



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088  IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu.       30    IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

How do we fix such DNS cache poisoning?



dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088  IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu.       30    IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Don’t accept Additional records unless 
they’re for the domain we’re looking up

E.g., looking up eecs.mit.eduÞ only accept 
additional records from *.mit.edu

No extra risk in accepting these since server could 
return them to us directly in an Answer anyway.

=



Security risk #1: malicious DNS server
• Of course, if any of the DNS servers queried are 

malicious, they can lie to us and fool us about the 
answer to our DNS query…

• and they used to be able to fool us about the 
answer to other queries, too, using cache 
poisoning.  Now fixed (phew).



Security risk #2: on-path eavesdropper
• If attacker can eavesdrop on our traffic…

we’re hosed.
• Why?



Security risk #2: on-path eavesdropper
• If attacker can eavesdrop on our traffic…

we’re hosed.
• Why?  They can see the query and the 16-bit 

transaction identifier, and race to send a spoofed 
response to our query.



Security risk #3: off-path attacker
• If attacker can’t eavesdrop on our traffic, can he 

inject spoofed DNS responses?
• Answer: It used to be possible, via blind spoofing.

We’ve since deployed mitigations that makes this 
harder (but not totally impossible).



Blind spoofing

• Say we look up 
mail.google.com; how can an 
off-path attacker feed us a 
bogus A answer before the 
legitimate server replies?

• How can such a remote
attacker even know we are 
looking up mail.google.com?

...<img src="http://mail.google.com" …> ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Suppose, e.g., we visit a web 
page under their control:



Blind spoofing

• Say we look up 
mail.google.com; how can 
an off-path attacker feed us a 
bogus A answer before the 
legitimate server replies?

• How can such an attacker 
even know we are looking up 
mail.google.com?
Suppose, e.g., we visit a web 
page under their control:

...<img src="http://mail.google.com" …> ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

This HTML snippet causes our 
browser to try to fetch an image from 
mail.google.com.  To do that, our 
browser first has to look up the IP 
address associated with that name.



Blind spoofing

So this will be k+1

They observe ID k here<img src="http://badguy.com" …>
<img src="http://mail.google.com" …>

Originally, identification field 
incremented by 1 for each 
request.  How does attacker 
guess it?

Once they know we’re looking 
it up, they just have to guess 
the Identification field and reply 
before legit server.

How hard is that?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?



DNS Blind Spoofing, cont.

Attacker can send lots of replies, 
not just one …

However: once reply from legit 
server arrives (with correct 
Identification), it’s cached and 
no more opportunity to poison it. 
Victim is innoculated!

Once we randomize the 
Identification, attacker has a 
1/65536 chance of guessing it 
correctly.
Are we pretty much safe?

Unless attacker can send 
1000s of replies before legit 
arrives, we’re likely safe –
phew! ?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits



• DNS threats highlight:
– Attackers can attack opportunistically rather than 

eavesdropping
o Cache poisoning only required victim to look up some name 

under attacker’s control (has been fixed)
– Attackers can often manipulate victims into vulnerable 

activity
o E.g., IMG SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication 
to have sufficient entropy (= a lot of bits of 
unpredictability)

– “Attacks only get better”: threats that appears 
technically remote can become practical due to 
unforeseen cleverness

Summary of DNS Security Issues



Common Security Assumptions

• (Note, these tend to be pessimistic … but prudent)

• Attackers can interact with our systems without 
particular notice
– Probing (poking at systems) may go unnoticed …
– … even if highly repetitive, leading to crashes, and easy 

to detect

• It’s easy for attackers to know general information 
about their targets
– OS types, software versions, usernames, server ports, IP 

addresses, usual patterns of activity, administrative 
procedures



Common Assumptions

• Attackers can obtain access to a copy of a given 
system to measure and/or determine how it works

• Attackers can make energetic use of automation
– They can often find clever ways to automate

• Attackers can pull off complicated coordination
across a bunch of different elements/systems

• Attackers can bring large resources to bear if 
needed
– Computation, network capacity
– But they are not super-powerful (e.g., control entire ISPs)



The Kaminsky Blind Spoofing 
Attack



DNS Blind Spoofing, cont.

Attacker can send lots of replies, 
not just one …

However: once reply from legit 
server arrives (with correct 
Identification), it’s cached and 
no more opportunity to poison it. 
Victim is innoculated!

Once we randomize the 
Identification, attacker has a 
1/65536 chance of guessing it 
correctly.
Are we pretty much safe?

Unless attacker can send 
1000s of replies before legit 
arrives, we’re likely safe –
phew! ?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits



DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:

– Attacker can get around caching of legit replies by 
generating a series of different name lookups: 

– Trick victim into looking up a domain you don’t care 
about, use Additional field to spoof the domain you do 
care about

<img src="http://random1.google.com" …>
<img src="http://random2.google.com" …>
<img src="http://random3.google.com" …>

...
<img src="http://randomN.google.com" …>



;; QUESTION SECTION:
;random7.google.com.            IN      A

;; ANSWER SECTION:
random7.google.com      21600   IN      A       doesn’t	matter

;; AUTHORITY SECTION:
google.com.             11088   IN      NS      mail.google.com

;; ADDITIONAL SECTION:
mail.google.com         126738  IN      A       6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com, 
attacker spoofs a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
mail.google.com … but also the cached NS record for 
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine



;; QUESTION SECTION:
;random7.google.com.            IN      A

;; ANSWER SECTION:
random7.google.com      21600   IN      A       doesn’t	matter

;; AUTHORITY SECTION:
google.com.             11088   IN      NS      mail.google.com

;; ADDITIONAL SECTION:
mail.google.com         126738  IN      A       6.6.6.6

Kaminsky Blind Spoofing
For each lookup of randomk.google.com, 
attacker spoofs a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
mail.google.com … but also the cached NS record for 
google.com’s name server – so any future
X.google.com lookups go through the attacker’s machine



Defending Against Blind Spoofing

Central problem: all that tells a 
client they should accept a 
response is that it matches the 
Identification field.

With only 16 bits, it lacks 
sufficient entropy: even if truly 
random, the search space an 
attacker must brute force is too 
small.

Where can we get more 
entropy?  (Without requiring a 
protocol change.)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits



Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bitsFor requestor to receive DNS 
reply, needs both correct 
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 – but 
not fundamental, just convenient.

Total entropy: 16 bits



Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits

Total entropy: ? bits
“Fix”: client uses random 
source port Þ attacker doesn’t 
know correct dest. port to use in 
reply



Defending Against Blind Spoofing
“Fix”: client uses random 
source port Þ attacker doesn’t 
know correct dest. port to use in 
reply

32 bits of entropy makes it 
orders of magnitude harder for 
attacker to guess all the 
necessary fields and dupe victim 
into accepting spoof response.

This is what primarily “secures”
DNS against blind spoofing 
today.

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

SRC=53 DST=rnd

checksum length

16 bits 16 bits



Lessons learned

• Special risks of caching and distributed systems 
where information is spread across many machines

• Security risks: friend (cache) might be malicious
• Communication channel to friend (cache) might be 

insecure
• Friend (cache) might be well-intentioned but 

misinformed



Denial-of-Service (DoS)



Attacks on Availability

• Denial-of-Service (DoS): preventing legitimate 
users from using a computing service

• Distributed Denial-of-Service (DDoS) occurs when 
a server is flooded with traffic from many different 
devices

• We do though need to consider our threat model …
– What might motivate a DoS attack?





Motivations for DoS

• Showing off / entertainment / ego
• Competitive advantage

– Maybe commercial, maybe just to win

• Vendetta / denial-of-money
• Extortion
• Political statements
• Impair defenses
• Espionage
• Warfare





























Attacks on Availability

• Deny service via a program flaw (“*NULL”)
– E.g., supply an input that crashes a server
– E.g., fool a system into shutting down

• Deny service via resource exhaustion
(“while(1);”)
– E.g., consume CPU, memory, disk, network

• Network-level DoS vs application-level DoS



DoS & Operating Systems

• How could you DoS a multi-user Unix system on which 
you have a login?



DoS & Operating Systems

• How could you DoS a multi-user Unix system on which 
you have a login?
– char buf[1024];
int f = open("/tmp/junk"); 
while (1) write(f, buf, sizeof(buf));
o Gobble up all the disk space!

– while (1) fork();
o Create a zillion processes!

– Create zillions of files, keep opening, reading, writing, deleting
o Thrash the disk

– … doubtless many more

• Defenses?



DoS & Operating Systems

• How could you DoS a multi-user Unix system on which 
you have a login?
– char buf[1024];
int f = open("/tmp/junk"); 
while (1) write(f, buf, sizeof(buf));
o Gobble up all the disk space!

– while (1) fork();
o Create a zillion processes!

– Create zillions of files, keep opening, reading, writing, deleting
o Thrash the disk

– … doubtless many more

• Defenses?
– Isolate users / impose quotas



Network-level DoS

• Can exhaust network resources by
– Flooding with lots of packets (brute-force)
– DDoS: flood with packets from many sources
– Amplification: Abuse patsies who will amplify your traffic for 

you



DoS & Networks

• How could you DoS a target’s Internet access?
– Send a zillion packets at them
– Internet lacks isolation between traffic of different 

users!

• What resources does attacker need to pull this 
off?
– At least as much sending capacity (“bandwidth”) as 

the bottleneck link of the target’s Internet connection
o Attacker sends maximum-sized packets

– Or: overwhelm the rate at which the bottleneck router
can process packets
o Attacker sends minimum-sized packets!

• (in order to maximize the packet arrival rate)



Defending Against Network DoS

• Suppose an attacker has access to a beefy system with 
high-speed Internet access (a “big pipe”).

• They pump out packets towards the target at a very high 
rate.

• What might the target do to defend against the 
onslaught?
– Install a network filter to discard any packets that arrive with 

attacker’s IP address as their source
o E.g., drop * 66.31.1.37:* -> *:*
o Or it can leverage any other pattern in the flooding traffic that’s not 

in benign traffic
– Attacker’s IP address = means of identifying misbehaving user



Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:
– Make traffic appear as though it’s from many hosts

o Spoof the source address so it can’t be used to filter
• Just pick a random 32-bit number of each packet sent

o How does a defender filter this?
• They don’t!
• Best they can hope for is that operators around the world 

implement anti-spoofing mechanisms (today about 75% do)
– Use many hosts to send traffic rather than just one

o Distributed Denial-of-Service = DDoS (“dee-doss”)
o Requires defender to install complex filters
o How many hosts is “enough” for the attacker?

• Today they are very cheap to acquire … :-(



It’s Not A “Level Playing Field”

• When defending resources from exhaustion, 
need to beware of asymmetries, where 
attackers can consume victim resources with 
little comparable effort
– Makes DoS easier to launch
– Defense costs much more than attack

• Particularly dangerous form of asymmetry: 
amplification
– Attacker leverages system’s own structure to pump up 

the load they induce on a resource



Amplification: Network DoS

• One technique for magnifying flood traffic: 
leverage Internet’s broadcast functionality



Amplification: Network DoS

• One technique for magnifying flood traffic: 
leverage Internet’s broadcast functionality

• How does an attacker exploit this?
– Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
– All of the replies then go to the victim rather than the 

attacker’s machine
– Each attacker pkt yields dozens of flooding pkts

• Note, this particular threat has been fixed
– By changing the Internet standard to state routers 

shouldn’t forward pkts addressed to broadcast addrs
– Thus, attacker’s spoofs won’t make it to target subnet

smurf 
attack



Amplification

• Example of amplification: DNS lookups
– Reply is generally much bigger than request

o Since it includes a copy of the reply, plus answers etc.
Þ Attacker spoofs DNS request to a patsy DNS

server, seemingly from the target
o Small attacker packet yields large flooding packet
o Doesn’t increase # of packets, but total volume

• Note #1: these examples involve blind spoofing
– So for network-layer flooding, generally only works for 

UDP-based protocols (can’t establish TCP conn.)

• Note #2: victim doesn’t see spoofed source 
addresses
– Addresses are those of actual intermediary systems



Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment 

handshake
– Goal: agree on initial sequence numbers

Client (initiator) Server

Server creates state
associated with 
connection here
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack



Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment 

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force 
the server to spend some memory

Client (initiator) Server

Server creates state
associated with 
connection here
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack



TCP SYN Flooding
• Attacker targets memory rather than network 

capacity

• Every (unique) SYN that the attacker sends 
burdens the target

• What should target do when it has no more 
memory for a new connection?

• No good answer!
– Refuse new connection?

o Legit new users can’t access service
– Evict old connections to make room?

o Legit old users get kicked off



TCP SYN Flooding Defenses

• How can the target defend itself?

• Approach #1: make sure they have tons of 
memory!

– How much is enough?
– Depends on resources attacker can bring to bear 

(threat model), which might be hard to know



TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their 
connections
– Hard because only way to identify them is based on IP 

address
o We can’t for example require them to send a password because 

doing so requires we have an established connection!
– For a public Internet service, who knows which 

addresses customers might come from?
– Plus: attacker can spoof addresses since they don’t 

need to complete TCP 3-way handshake 

• Approach #3: don’t keep state!  (“SYN cookies”; 
only works for spoofed SYN flooding)



SYN Flooding Defense: Idealized

Client (initiator) Server

• Server: when SYN arrives, rather than keeping 
state locally, send it to the client …

• Client needs to return the state in order to 
established connection 

Server only saves 
state here

Do not save state 
here; give to client



SYN Flooding Defense: Idealized

Client (initiator) Server

• Server: when SYN arrives, rather than keeping 
state locally, send it to the client …

• Client needs to return the state in order to 
established connection 

Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to 
add a new <State> field like this.

Is there any way to get the same 
functionality without having to 
change TCP clients?



Practical Defense: SYN Cookies

Client (initiator) Server

• Server: when SYN arrives, encode connection 
state entirely within SYN-ACK’s sequence # y
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only 
creates state if value of y from it agrees w/ secret

Server only creates 
state here

Do not create
state here

Instead, encode it here

y = T (lower bits of timestamp), lower bits of HMAC(key, T, source port & IP, destination port & IP)]



SYN Cookies: Discussion

• Illustrates general strategy: rather than holding
state, encode it so that it is returned when 
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have 
enough bits to encode all the state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win



Application-Layer DoS

• Rather than exhausting network or memory 
resources, attacker can overwhelm a 
service’s processing capacity

• There are many ways to do so, often at little 
expense to attacker compared to target 
(asymmetry)



The link sends a request to the web server that 
requires heavy processing by its “backend database”.



Algorithmic complexity attacks
• Attacker can try to trigger worst-case complexity 

of algorithms / data structures
• Example: You have a hash table.

Expected time: O(1).  Worst-case: O(n).
• Attacker picks inputs that cause table collisions.

Time per lookup: O(n).
Total time to do n operations: O(n^2).

• Solution?  Use algorithms with good worst-case 
running time.
– E.g., universal hash function guarantees that 

Pr[hk(x)=hk(y)] = 1/2^b, so hash collisions will be rare.



Application-Layer DoS

• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)

• Defenses against such attacks?
• Approach #1: Only let legit users issue expensive requests

– Relies on being able to identify/authenticate them
– Note: that this itself might be expensive!

• Approach #2: Force legit users to “burn” cash
• Approach #3: massive over-provisioning ($$$)



DoS Defense in General Terms
• Defending against program flaws requires:

– Careful design and coding/testing/review
– Consideration of behavior of defense mechanisms

o E.g. buffer overflow detector that when triggered halts 
execution to prevent code injection Þ denial-of-service

• Defending resources from exhaustion can be 
really hard.  Requires:
– Isolation and scheduling mechanisms

o Keep adversary’s consumption from affecting others
– Reliable identification of different users


