Code safety (cont’d)

&& Access control

CS 161: Computer Security

Prof. Raluca Ada Popa

Announcements

* Homework 1 is out, due in a week

* Dean approved class expansion, three new
discussion sections, stay tuned for details

* Scraped lecture slides available before class
* Do not use them for answering in class

e Full lecture slides available after class

Precondition

* A precondition for a function f() is an assertion that
must hold about the inputs to f

* f() is assumed to behave correctly and produce
correct output as long as the precondition is met

* The caller must make sure the precondition is met

* The callee (the code inside f()) can assume that the
precondition is met

Example

Q: What is the precondition?

int sum(int *af[], size t n) {
int total = 9;
size t 1i;
for (i=0; i<n; i++)
total += *(a[i]);
return total;

Example

/* requires: a != NULL && size(a) >= n &&

for all j in @..n-1, a[j] != NULL && (sum;
*a[i]<=MAX_INT) */

int sum(int *a[], size t n) {
int total = 9;
size t 1;
for (i=0; i<n; i++)
total += *(a[i]);
return total;

Postcondition

* A postcondition on f() is an assertion that holds
when f() returns

* The caller of f() can assume that the postcondition
holds

* f() must make sure the postcondition holds

Example

Q: What is the postcondition?

void *mymalloc(size t n) {
void *p = malloc(n);

if (Ip) {

perror("0Out of memory");
exit(1);

¥

return p;

Example

/* ensures: retval != NULL && retval
points to n bytes of memory */

void *mymalloc(size t n) {
void *p = malloc(n);
if (!p) {

perror("0Out of memory");
exit(1);

¥

return p;

Specification vs implementation

* A function has a specification =
precondition+postcondition

* And an implementation that should meet the
specification: for all inputs satisfying the
precondition, it must satisfy the postcondition.

Reasoning about code

To prove that a function whose inputs satisfy the
precondition, matches the postcondition, you can:

* Write down a precondition and postcondition for
every line of code, and prove this

e Each statement’s postcondition must imply the
precondition of the next statement. This is an invariant
that is true at any point in time.

 Final postcondition is the postcondition for the
function

Invariant examples

/* requires: n >= 0 */
void binpr(int n) {
char digits[] = "©123456789"; /* n >= 0 */
while (n != 0) {/* n>e */
int d = n % 10; /* 0<=d & d < 10 && n > 0*/
putchar(digits[d]);
N =n/ 10; /* o<=d && d<10 && n>=0*/

}
putchar(’0’);

What is the precondition?

int sumderef(int *a[], size t n) {
int total = 9;
for (size t i=0; i<n; i++)
total += *(a[i]);
return total;

What is the precondition?

/* requires: a != NULL &&
size(a) >= n &&
PP

int sumderef(int *a[], size t n) {

int total = 9;

for (size t i=0; i<n; i++)

total += *(a[i]);
return total;

*/

What is the precondition?

/* requires: a != NULL &&
size(a) >= n &&

for all j in 0..n-1, a[j] != NULL
(&& sum *(a[i]) <= MAXINT)*/
int sumderef(int *a[], size t n) {

int total = 9;

for (size t 1=0; i<n; i++)

total += *(a[i]);
return total;

char *tbl[N]; /* N > ©, has type int */

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h 7% N;

}

What is the correct postcondition for hash()?
(a) 0 <=retval < N, (b) 0 <= retval,

(c) retval < N, (d) none of the above.
Discuss with a partner.

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures: O <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures: O <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3;
return h % N;

}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures: O <= retval && retval < N */
int hash(char *s) {

int h = 17; /* 0 <= h */
while (*s) /¥ 0 <= h */
h = 257*h + (*s++) + 3; /¥ @ <= h */

return h % N;

}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures: O <= retval && retval < N */
int hash(char *s) {

int h = 17; /* 0 <= h */
while (*s) /¥ 0 <= h */
h = 257*h + (*s++) + 3; /¥ @ <= h */

return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

C

har *tbl[N];

/* ensures: 0 <= retval && retval < N */

i

}

nt hash(char *s) {
int h = 17; /* 0
while (*s) /* O

h = 257*h + (*s++) + 3; /* 0O
return h % N; /* 0 <= retval < N

Is the postcondition correct?
(a) Yes, (b) 0 <= retval is correct,

(c) retval < N is correct, (d) both are wrong.

n */
n */

n */

char *tbl[N];

/* ensures: O <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /*N */
return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

}

char *tbl[N];

/* ensures

: O <= retval && retval < N */

int hash(char *s) {

int h =

17, /* @ <= h */

while (*s) /* @ <= h */
h = 257*h + (*s++) + 3; /*N */

return h

}

bool searc
int 1 =
return t

}

% N; /* Mcval <N */

n(char *s) {
nash(s);

pl1[i] && (strcmp(tbl[i], s)==0);

char *tbl[N];

/* ensures

:x’cval && retval < N */
int hash(char *s)

int h =

17, /* @ <= h */

while (*s) /* @ <= h */
h = 257*h + (*s++) + 3; /*M */

return h

}

bool searc
int 1 =
return t

}

% N; /* Mcval <N */

n(char *s) {
nash(s);

pl1[i] && (strcmp(tbl[i], s)==0);

char *tbl[N];

/* ensures: N’cval && retval < N */
int hash(char *s)

int h = 17; /* @ <= h */
while (*s) /* @ <= h */
h = 257*h + (*s++) + 3; /*N */

return h % N; /* Mcval < N */
}

What is the correct postcondition for hash()?

(a) 0 <=retval < N, (b) 0 <= retval,
@w» none of the above.
Discuss with a partner.

char *tbl[N];

/* ensures

:N’cval && retval < N */
int hash(char *s)

int h =

17; /* @ <= h */

while (*s) /* @ <= h */
h = 257*h + (*s++) + 3; /*M */

return h

}

bool searc
int 1 =
return t

}

% N; /* Mcval <N */

n(char *s) {
nash(s);

pl1[i] && (strcmp(tbl[i], s)==0);
Fix?

char *tbl[N];

/* ensures: O <= retval && retval < N */
unsigned int hash(char *s) {

unsigned int h = 17; /* @ <= h */
while (*s) /¥ 0 <= h */
h = 257*h + (*s++) + 3; /¥ @ <= h */

return h % N; /* 0 <= retval < N */
}

bool search(char *s) {

unsigned int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

Access Control and
OS Security

Types of Security Properties

* Confidentiality
* Integrity
* Availability

Access Control

* Some resources (files, web pages, ...) are sensitive.
* How do we limit who can access them?

* This is called the access control problem

Access Control Fundamentals

 Subject = a user, process, ...
(someone who is accessing resources)

* Object = a file, device, web page, ...
(a resource that can be accessed)

 Policy = the restrictions we’ll enforce

e access(S, O) = true
if subject S is allowed to access object O

Example

* access(Alice, Alice’s wall) = true
access(Alice, Bob’s wall) = true
access(Alice, Charlie’s wall) = false

* access(raluca, /home/cs161/gradebook) = true
access(Alice, /home/cs161/gradebook) = false

Access Control Matrix

e access(S, O) = true
if subject S is allowed to access object O

Bob’s wall Charlie’s
wall

Alice true true false
Bob false true false

Permissions

* We can have finer-grained permissions,
e.g., read, write, execute.

* access(raluca, /cs161/grades/alice) = {read, write}
access(alice, /cs161/grades/alice) = {read}
access(bob, /cs161/grades/alice) = {}

- Ics161/grades/alice

daw read, write
alice read
bob

Access Control

* Authorization: who should be able to perform which
actions

* Authentication: verifying who is requesting the action

Access Control

* Authorization: who should be able to perform which
actions

* Authentication: verifying who is requesting the action

* Audit: a log of all actions, attributed to a particular
principal

* Accountability: hold people legally responsible for
actions they take.

Web security

* Let’s talk about how this applies to web security...

Structure of a web application

controller \ /friends.php / database
/search.php
. How should we

implement access
control policy?

/viewwall.php

Option 1: Integrated Access Control

record
username
controller \

Record username.
Check policy at each
place in code that
accesses data.

1

/login|
ACCESS

check

/friends .php / database

access
check

/search.php

access
check

/viewwall.php

Option 2: Centralized Enforcement

record

username
access

/ /login Php
check

controller \ firiends.php / database
Record username.
Database checks

/search php
policy for each

d ata access /Vlewwall php

Option 1: Integrated Access
Control

record
sername

access
check

controller

/friends.php

access
check

/search.php

access
check

/viewwall.php
Record username.

Check policy at each
place in code that
accesses data.

/ database

Which option

would you pick?
Discuss.

Option 2: Centralized
Enforcement

record

ac
ch

cess
eck
D

- <>
controller

database
riends.php

Record username.
Database checks

11.ph .
P Bolicy for each
data access.

Analysis

* Centralized enforcement might be less prone to error

* All accesses are vectored through a central chokepoint,
which checks access

* |f you have to add checks to each piece of code that
accesses data, it’s easy to forget a check (and app will work
fine in normal usage, until someone tries to access
something they shouldn’t)

* Integrated checks might be more flexible

Complete mediation

* The principle: complete mediation

* Ensure that all access to data is mediated by
something that checks access control policy.

* In other words: the access checks can’t be bypassed

If you don’t have complete mediation,
yvour access control will fail

Reference monitor

* A reference monitor is responsible for mediating all

access to data

reference
monitor

N

e Subject cannot access data directly; operations must
go through the reference monitor, which checks

whether they’re OK

Criteria for a reference monitor

|deally, a reference monitor should be:

* Unbypassable: all accesses go through the reference
monitor

* Tamper-resistant: attacker cannot subvert or take
control of the reference monitor (e.g., no code
injection)

* Verifiable: reference monitor should be simple
enough that it’s unlikely to have bugs

Example: OS memory protection

* All memory accesses are mediated by memory
controller, which enforces limits on what memory
each process can access

TCB

* More broadly, the trusted computing base (TCB) is
the subset of the system that has to be correct, for
some security goal to be achieved

* Example: the TCB for enforcing file access permissions
includes the OS kernel and filesystem drivers

* |deally, TCBs should be unbypassable, tamper-
resistant, and verifiable

Robustness

e Security bugs are a fact of life

 How can we use access control to improve the
security of software, so security bugs are less likely
to be catastrophic?

Privilege separation

* How can we improve the security of software, so
security bugs are less likely to be catastrophic?

* Answer: privilege separation. Give each module
only the privilege it needs.

* In particular, architect the software so it has a separate,
small TCB.

* Then any bugs outside the TCB will not be catastrophic.

Naive web browser

/Trusted h
Computing
Base
%
Web Browser
HTML, JS, ... Render

Gouglﬁ‘

websites

“Drive-by malware”. malicious web page
exploits a browser bug to read/write local
files or infect them with a virus

The Chrome browser

Two pieces: rendering engine and browser kernel

Rendering engine:

- Interprets HTML and turns it into bitmap image to
display on screen

- Most bugs are here so it is ran inside a sandbox

- Sandbox isolates the engine from the rest of the
system, including files,and allows only narrow
API to the outside

Browser kernel:
- Mediates all access to the file system

The Chrome browser

Sandbox

Goal: prevent “drive-by

ReEnd?ring malware”, where a malicious
ngine

web page exploits a browser
bug to read/write local files
or infect them with a virus

CC}L JSIC

HTML, JS Rendered Bitmap

Browser Kernel } TCB (for this property)

The Chrome brgu

Sandbox

Rendering 1000K lines of code
Engine

GDUSIE’ |

)
Bty | o F ey [

Rendered Bitmap

} 700K lines of code

HTML, JS, ...

Growser Kernel

Benefit of Secure Design

Browser

Internet Explorer 6

Internet Explorer 7
Internet Explorer 8

Internet Explorer 9

Firefox 3.6

Firefox 38

Google Chrome 42

Opera 11

Safari 5

Extremely critical
(number / oldest)

0

Highly critical
(number / oldest)

0

Known unpatched vulnerabilities

Secunia

Moderately critical
(number / oldest)

Less critical
(number / oldest)

4 8

17 November 2004 27 February 2004
1 4

30 October 2006 6 June 2006

0 1

26 February 2007
0 0
0 0
0 0
0 0
0 0
0 1

8 June 2010

SecurityFocus

Not critical Total
(number / oldest) | (number / oldest)

12 534

5 June 2003 20 November 2000
10 213

5 June 2003 15 August 2006
8 123

5 June 2003 14 January 2009
2 26

6 December 2011 5 March 2011
0 1
20 December 2011

0 0
0 0
1 2

6 December 2011 6 December 2011

2
13 December 2011

HOW IT WORKS FIND SAVINGS SUPPORT BLOG & Llogin & SIGN UP }

o EY PR ER1 M —
€10 D) \ J M YOUK |

FROM THE BIG PICTURE

TO THE DETAILS THAT MATTER

Effortlessly manage your cash flow, budgets and bills from one place.

& SIGN UP FREE

All-in-one? Done Budgets? You betcha Credit? Checked
From money and budgeting to Effortlessly create budgets that are easy Find out yours and learn how you can
customized tips and more—get a clear to stick to. We even make a few for you. improve it. It's totally free.
view of your total financial life.
= " -
“ v aa e

Discuss with a partner

* How would you architect mint.com to reduce the
likelihood of a catastrophic security breach?

* E.g., where attacker steals all users’ stored passwords or
empties out all their bank accounts overnight

Summary

* Access control is a key part of security.

* Privilege separation makes systems more robust: it
helps reduce the impact of security bugs in your
code.

* Architect your system to make the TCB
unbypassable, tamper-resistant, and verifiable
(small).

More principles for designhing more
secure software

trssel”

TL-15

TL-30

TRTL-30

o
P
L
T
>
T

“Security is economics.”

orre -)B)X

File Options Help

@ ‘JZ’ 8 E Ei E 'y i \\ @ I::Sr':arw:!'rHere::v IL:;
=

* Al (3) Name Size Done Status Seeds Peers Down Speed Up Speed = ETA Uploaded Ratio Avail. = Label
E3Downloading (3) || E3000_2.2.1_Win32Intel_instal_wl... 1 108MB |[MEEME- Downloading 55 (73) 5(83) 397.5kB/s 6.6kBfs 57s 528kB 0.006 S56....
@ Completed (0) [+ [KNOPPIX_V5. 1.1DVD-2007-01-04... 2 4.02GB Downloading 56 (60) 9 (244) 187.0 kB/s 25.3kB/s 6h 30m 2.95MB :
@Active (2) 3 ubuntu-7.04-desktop-i386.is0 3 697MB 0.0% Queued 0 (641) 0 (54) 0 0.0kB 0.000 0.000
Dnactive (1)
No Label (3)
< i >
l @ ceneral [Lg Peers | Q Pieces “ [Z] Files “ } Speed “ \) Logger [
P Client Flags % Down Speed = Up Speed Regs Uploaded Downloaded = Peerdl. N
S cpe-24-92-249-186. tweny.res.rr.com Azureus/2.5.0.4 dXE 100.0
&S cpe-24-162-126-147.hot.res.rr.com Transmission 0.80-svn d IX 100.0 3.1kB/s 32.0kB
[24-177-50-115.dhcp.oxfr.ma.charter.com pTorrent 1.7 dIHXE 100.0 1.64MB
[24-178-114-166.dhcp.wspn.ga.charter.com pTorrent 1.6.1 dIHXE 100.0 43.0kB =
S \ysp05957058wss. cr.net.cable.rogers.com KTorrent 2.2rc1 dIHXE 100.0 5.2kB/s 544kB
== cust. 13.6.adsl.dstron.nl pTorrent 1.6.1 DIHXE 100.0 0.4kB/s 2|0
S cpe-66-8-185-105.hawaii.res.rr.com Azureus/2.5.0.4 dXE 100.0 =
66.65.59.37 BitTorrent 5.0.7 dIX 100.0 2.7kB/s 43.0kB
5 66-214-179-78.dhcp.gldl.ca.charter.com KTorrent 2.2 THX 0.0
67.85.64.225 pTorrent/1.6.0.0 D HXE 100.0 9.5kB/s 4|0 144kB
li*lbas2-stcatharines 10-1177764066.dsl.bell.ca pTorrent 1.6.1 UDHXE 10.8 2.2kB/s 2.8kB/s 22 512kB 256 kB 288.2k...
S ysip-70-184-249-191.0k.ok.cox.net pTorrent 1.6.1 DIHXE 100.0 17.7kB/s 160 2.35MB
70.186.189.141 Azureus/3.0.1.6 dXE 100.0
= 71-10-91-182.dhcp.roch.mn.charter.com KTorrent 2.2 dIXE 100.0 16.0kB
S ¢.71-63-128-140.hsd 1.mn.comcast.net pTorrent 1.7 D HXE 100.0 10.4kB/s 4|0 1.98 MB
[3dsl-71-131-190-233.dsl.sntcd 1.pacbell.net pTorrent 1.6.1 D HXE 100.0 4.7kBfs 3|0 304kB
S 3ds|-71-145-148-192.dsl. austtx.sbcglobal.net BitTorrent 5.0.7 DIX 100.0 1.0kB/s 2|0 224kB
72.24.208.255 Azureus/2.5.0.4 DS XE 100.0 2|0 32.0kB
72.93.219.133 pTorrent/1.6.0.0 d IHXE 100.0
72.150.126.8 Azureus/3.0.1.6 ud IX 7.4
Eip72-202-139-196.ks.ks.cox.net pTorrent 1.6.1 D HXE 100.0 2.6kB/s 3|0 112kB
74N A4 1AN Mszinlina 4 N1 nTv 1NN N a2lrie 21N 174 LR :

DHT: 278 nodes @ D:606.7kB/s T: 112.1MB U: 33.0kB/s T: 4.2 MB

File Options Help
@ ‘JZ’ 8 E E! E 'y z \\ @ I Search Here =
* Al (3) Name % Size Done Status Seeds Peers Down Speed Up Speed = ETA Uploaded Ratio Avail. = Label
E3Downloading (3) || E3000_2.2.1_Win32Intel_instal_wl... 1 108MB |[MEEME- Downloading 55 (73) 5(83) 397.5kB/s 6.6kBfs 57s 528kB 0.006 S56....
@ Completed (0) [+ [KNOPPIX_V5. 1.1DVD-2007-01-04... 2 4.02GB Downloading 56 (60) 9 (244) 187.0 kB/s 25.3kB/s 6h 30m 2.95MB 0. :
@Active (2) 3 ubuntu-7.04-desktop-i386.is0 3 697MB 0.0% Queued 0 (641) 0 (54) 0 0.0kB 0.000 0.000
Dnactive (1)
No Label (3)
< i >
l @ ceneral [Lg Peers | Q Pieces “ [Z] Files “ } Speed “ \) Logger [
P Client Flags % Down Speed = Up Speed Regs Uploaded Downloaded = Peerdl. N
B
S
S)
==) =
ESPY
== cust. 13.6.adsl.dstron.nl pTorrent 1.6.1 DIHXE 100.0 0.4kB/s
S cpe-66-8-185-105.hawaii.res.rr.com Azureus/2.5.0.4 dXE 100.0 =
66.65.59.37 BitTorrent 5.0.7 dIX 100.0 2.7kB/s 43.0kB
5 66-214-179-78.dhcp.gldl.ca.charter.com KTorrent 2.2 THX 0.0
67.85.64.225 pTorrent/1.6.0.0 D HXE 100.0 9.5kB/s 4|0 144kB
li*lbas2-stcatharines 10-1177764066.dsl.bell.ca pTorrent 1.6.1 UDHXE 10.8 2.2kB/s 2.8kB/s 22 512kB 256 kB 288.2k...
S ysip-70-184-249-191.0k.ok.cox.net pTorrent 1.6.1 DIHXE 100.0 17.7kB/s 160 2.35MB
70.186.189.141 Azureus/3.0.1.6 dXE 100.0
= 71-10-91-182.dhcp.roch.mn.charter.com KTorrent 2.2 dIXE 100.0 16.0kB
S ¢.71-63-128-140.hsd 1.mn.comcast.net pTorrent 1.7 D HXE 100.0 10.4kB/s 4|0 1.98 MB
[3dsl-71-131-190-233.dsl.sntcd 1.pacbell.net pTorrent 1.6.1 D HXE 100.0 4.7kBfs 3|0 304kB
S 3ds|-71-145-148-192.dsl. austtx.sbcglobal.net BitTorrent 5.0.7 DIX 100.0 1.0kB/s 2|0 224kB
72.24.208.255 Azureus/2.5.0.4 DS XE 100.0 2|0 32.0kB
72.93.219.133 pTorrent/1.6.0.0 d IHXE 100.0
72.150.126.8 Azureus/3.0.1.6 ud IX 7.4
Eip72-202-139-196.ks.ks.cox.net pTorrent 1.6.1 D HXE 100.0 2.6kB/s 3|0 112kB
74N A4 1AN Mszinlina 4 N1 nTv 1NN N a2lrie 21N 174 LR :
DHT: 278 nodes @ D:606.7kB/s T: 112.1MB U: 33.0kB/s T: 4.2 MB

“Least privilege.”

When assessing the security of a system’s design, identify the
Trusted Computing Base (TCB).

* What components does security rely upon?

Security requires that the TCB:
* |s correct
* |s complete (can’t be bypassed)
* Isitself secure (can’t be tampered with)

Best way to be assured of correctness and its security?
* KISS = Keep It Simple, Stupid!
* Generally, =

One powerful design approach: privilege separation

* |solate privileged operations to as small a component as possible
* (See lecture notes for more discussion)

* We've seen that PC platforms grant applications a lot
of privileges

* Quiz: Name a platform that does a better job of least
privilege

P

—-

-’v\-‘\ 3

“Ensure complete mediation.”

* To secure access to some capability/resource,
construct a reference monitor

* Single point through which all access must occur
e E.g.: a network firewall

* Desired properties:
* Un-bypassable (“complete mediation™)
* Tamper-proof (is itself secure)
 Verifiable (correct)
* (Note, just restatements of what we want for TCBs)

* One subtle form of reference monitor flaw concerns
race conditions ...

TOCTTOU Vulnerability

procedure withdrawal(w)
// contact central server to get balance
1. let b := balance

2. 1f b < w, abort
Balance could have decreased at this point due to another action

// contact server to set balance
3. set balance := b - w

4. dispense $w to user

TOCTTOU = Time of Check To Time of Use

public void buyItem(Account buyer, Item item) {
if (item.cost > buyer.balance)
return;
buyer.possessions.put(item);
buyer.possessionsUpdated();
buyer.balance -= item.cost;
buyer.balanceUpdated();

-t
-
-

|
. gon,_ﬁwﬁ_, 7,__%‘&__‘5‘

=

DO NOT KEY RTHX IX L/D
EXCEPT IN CASE OF A
EMERGENCY - MUST BE AT

LEAST GFT sl

“Division of trust.”
- reduce the trust in each party

2 ([1oes oF MARCH]
—RUM DIARY

e —

