Types of attacks

- Jailbreaking
- Rooting
- Unlocking
iOS Jailbreak

• iPhone used a protocol which allowed iTunes to write arbitrary files on iPhone’s filesystem
 – Why? iTunes needs to be able to sync files, push music to your iPhone, overwrite its code with software updates

• Exploit: Write a program that pretends to be iTunes and uses that protocol to overwrite kernel on iPhone with one that doesn’t enforce Apple’s restrictions
iOS Jailbreak

• iPhone used a protocol which allowed iTunes to write arbitrary files on iPhone’s filesystem
 – Why? iTunes needs to be able to sync files, push music to your iPhone, overwrite its code with software updates

• Exploit: Write a program that pretends to be iTunes and uses that protocol to overwrite kernel on iPhone with one that doesn’t enforce Apple’s restrictions

• If you were Apple, how would you fix this?
Jailbreakme.com

• Researcher finds buffer overrun in libtiff parsing code
• Someone notices that iOS browser uses libtiff, and runs as root.

• Exploit: browse to http://jailbreakme.com/ on your iPhone, they send you a malicious TIFF image that exploits buffer overrun, does code injection to run code that overwrites the iOS kernel on the filesystem with a modified kernel.
Jailbreakme.com

- Researcher finds buffer overrun in libtiff parsing code
- Someone notices that iOS browser uses libtiff, and runs as root.

- Exploit: browse to http://jailbreakme.com/ on your iPhone, they send you a malicious TIFF image that exploits buffer overrun, does code injection to run code that overwrites the iOS kernel on the filesystem with a modified kernel.

- If you were Apple, how would you fix this?
Pwnage 2.0

• Stack overflow in the iOS certificate parsing code

• Exploit: Send a malicious cert, exploit the buffer overrun, do code injection (just like Project 1), run code that overwrites kernel with modified kernel
steaks4uce

- Buffer overrun in the iOS code for handling a particular USB request
- Exploit: Send a malicious packet over USB, exploit the buffer overrun, do code injection, etc.
Defenses against jailbreaking

• Jailbreak = exploitable software vulnerability (often, buffer overrun)

• iOS architecture: all code is signed.
 – Bootloader verifies signed firmware, before starting it.
 – Firmware verifies signed kernel, before starting it.
 – Kernel verifies signed apps, before starting them.

• iOS architecture: apps are sandboxed.
 – System services run as user ‘root’
 – Apps run as user ‘mobile’, and are sandboxed (limited in what files they can write, devices they can access, …)
Example exploit chain

• Star PDF vulnerability: stack overflow in font parser, lets you get your code running as ‘mobile’.

• IOKit vulnerability: privilege escalation / sandbox escape – integer overflow in kernel code lets you become ‘root’.

• Payload: patch kernel to remove code signing checks.
Locking

• Unlock PIN checked by iOS code before letting you unlock device.

• Also, entire filesystem is encrypted using a key derived from your unlock PIN.
 – But your unlock PIN is only 4 digits long. What attacks does that enable?
 – How could you provide better protection? Discuss.
Takeaways

• Preventing owner of a device from compromising it is hard.
• Jailbreaks are just vulnerabilities.
• Unintended side effect: good guys look for vulnerabilities so they can root their phones; bad guys then use those vulnerabilities to infect people’s phones with malware.