
Most	Common	
Cryptography	Mistakes	

3/8/2016	

You	fell	vic+m	to	one	of	the	classic	blunders!	

#8:	Key	Re-use	

•  Don’t	use	same	key	for	both	direcEons.	
– Risk:	replay	aHacks	

•  Don’t	re-use	same	key	for	both	encrypEon	and	
authenEcaEon.	

	

#7:	Careful	with	ConcatenaEon	

•  Common	mistake:	Hash(S||T)	
– “builEn”	||	“securely”	=	“built”	||	“insecurely”	

Amazon	Web	Services	

hHp://amazon.com/set?u=daw&n=David&t=U&m=…	

MAC(K,”udawnDavidtU”)	

Amazon	Web	Services	

hHp://amazon.com/set?u=daw&n=DavidtAq&t=U&m=…	

MAC(K,”udawnDavidtAqtU”)	

hHp://amazon.com/set?u=daw&n=David&t=A&qt=U&m=…	

#7:	Careful	with	ConcatenaEon	

•  Common	mistake:	Hash(S||T)	
– “builEn”	||	“securely”	=	“built”	||	“insecurely”	

•  Fix:	Hash(len(S)	||	S	||	T)	
•  Make	sure	inputs	to	hash/MAC	are	uniquely	
decodable	

#5:	Don’t	Encrypt	without	Auth	

•  Common	mistake:	encrypt,	but	no	authenEcaEon	
– A	checksum	does	not	provide	authenEcaEon	

•  If	you’re	encrypEng,	you	probably	want	
authenEcated	encrypEon	
– Encrypt-then-authenEcate:	Ek1(M),	Fk2(Ek1(M))	
– Or,	use	a	dedicated	AE	mode:	GCM,	EAX,	…	

Encrypt	without	Auth	Hall	of	Shame	

•  ASP.NET	(x2)	
•  XML	encrypEon	
•  Amazon	EC2	
•  JavaServer	Faces	
•  Ruby	on	Rails	
•  OWASP	ESAPI	
•  IPSEC	
•  WEP	
•  SSH2	

#4:	Be	Careful	with	Randomness	

•  Common	mistake:	use	predictable	random	
number	generator	(e.g.,	to	generate	keys)	

•  SoluEon:	Use	a	crypto-quality	PRNG.	
– /dev/urandom,	CryptGenRandom,	…	

Netscape	Navigator	

char	chall[16],	k[16];	
	
srand(getpid()	+	time(NULL)	
						+	getppid());	
for	(int	i=0;	i<16;	i++)	
		chal[i]	=	rand();	
for	(int	i=0;	i<16;	i++)	
		chal[i]	=	rand();	
	

Netscape	Navigator	1.1	

R,	{K}KS	,	{M}K,	…	

certS	
Client	 Server	

where	(R,	K)	=	hash(microseconds,	x)	
																													x	=	seconds	+	pid	+	(ppid	<<	12)	

Netscape	Navigator	1.1	

R,	{K}KS	,	{M}K,	…	

certS	
Client	 Server	

where	(R,	K)	=	hash(microseconds,	x)	
																													x	=	seconds	+	pid	+	(ppid	<<	12)	

A7ack:	Eavesdropper	can	guess	x	(≈	10	bits)	and	
microseconds	(20	bits),	and	use	R	to	check	guess.	

Bad	PRNGs	=	broken	crypto	

•  Netscape	server’s	private	keys	(≈	32	bits)	
•  Kerberos	v4’s	session	keys	(≈	20	bits)	
•  X11	MIT-MAGIC-COOKIE1	(8	bits)	
•  Linux	vtun	(≈	1	bit)	
•  PlanetPoker	site	(≈	18	bits)	
•  Debian	OpenSSL	(15	bits)	
•  CryptoAG	–	NSA	spiked	their	PRNG	
•  Dual_EC_DRBG	–	backdoor	that	only	NSA	can	use	

#3:	Passphrases	Make	Poor	Keys	

•  Common	mistake:	Generate	crypto	key	as	
Hash(passphrase)	

•  Problem:	≈	20	bits	of	entropy;	even	with	a	slow	
hash,	this	is	not	nearly	enough.		Human-
generated	secrets	just	don’t	have	enough	
entropy.	

•  Example:	Bitcoin	brainwallets	
•  SoluEon:	Crypto	keys	should	be	random.	

#2:	Be	Secure	By	Default	

•  Common	mistake:	Security	is	opEonal,	or	
configurable,	or	negoEable	

•  Fix:	There	is	one	mode	of	operaEon,	and	it	is	
secure.		No	human	configuraEon	needed.	
– e.g.,	Skype	

#2:	Beware	Rollback	AHacks	

•  Common	mistake:	Security	is	negoEable,	and	
aHacker	can	persuade	you	to	fall	back	to	
insecure	crypto	

A	CASE	STUDY	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	both	endpoints	support	128-bit	crypto:	

where	K	=	hash(password	||	R)	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	both	endpoints	support	128-bit	crypto:	

where	K	=	hash(password	||	R)	

A7ack	1:	Eavesdropper	can	try	dic+onary	search	
on	password,	given	some	known	plaintext.	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	both	endpoints	support	128-bit	crypto:	

where	K	=	hash(password	||	R)	

A7ack	2:	Ac+ve	a7acker	can	tamper	with	packets	
by	flipping	bits,	since	there	is	no	MAC.	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

Client	 Server	

where	K	=	hash(password	||	R)	

A7ack	3:	Bad	guy	can	replay	a	prior	session,	since	
client	doesn’t	contribute	a	nonce.	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

Client	 Bad	Guy	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

Client	 Server	

where	K	=	hash(password	||	R)	

A7ack	4:	Bad	guy	can	replay	and	reverse	message	
direc+on,	since	same	key	used	in	both	direc+ons.	

M	⊕	RC4(K)	

So	do	I.		Here’s	a	nonce:	R	

I	support	128-bit	crypto	

Client	 Bad	Guy	

M	⊕	RC4(K)	

I	don’t.		Use	40-bit	crypto	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	one	endpoint	doesn’t	support	128-bit	crypto:	

where	K	=	hash(uppercase(password))	

M	⊕	RC4(K)	

I	don’t.		Use	40-bit	crypto	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	one	endpoint	doesn’t	support	128-bit	crypto:	

where	K	=	hash(uppercase(password))	

A7ack	1:	Eavesdropper	can	try	dic+onary	search	
on	password,	given	some	known	plaintext.	

M	⊕	RC4(K)	

I	don’t.		Use	40-bit	crypto	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

If	one	endpoint	doesn’t	support	128-bit	crypto:	

where	K	=	hash(uppercase(password))	

A7ack	2:	Dic+onary	search	can	be	sped	up	with	
precomputed	table	(given	known	plaintext).	

M	⊕	RC4(K)	

I	don’t.		Use	40-bit	crypto	

I	support	128-bit	crypto	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	

where	K	=	hash(uppercase(password))	

A7ack	3:	Imposter	server	can	downgrade	client	to	
40-bit	crypto,	then	crack	password.	

Bad	Guy	

M	⊕	RC4(K)	
I	don’t.		Use	40-bit	

I	support	128-bit	

MS	Point-to-Point	EncrypEon	(MPPE)	

Client	 Server	

where	K		=	hash(uppercase(password)),	
												K’	=	hash(password	||	R)	

A7ack	4:	Man-in-the-middle	can	downgrade	
crypto	strength	even	if	both	client	+	server	
support	128-bit	crypto,	then	crack	password.	

Bad	
Guy	

M’	⊕	RC4(K’)	

So	do	I.		Nonce:	R	
I	support	128-bit	

#1:	Don’t	Roll	Your	Own	

•  Don’t	design	your	own	crypto	algorithm	
•  Use	a	Eme-honored,	well-tested	system	
– For	data	in	transit:	TLS,	SSH,	IPSEC	
– For	data	at	rest:	GnuPG	

#0:	Crypto	Ain’t	Magic	

“If	you	think	cryptography	is	the	soluEon	to	your	
problem,	then	you	don’t	understand	cryptography	and	
you	don’t	understand	your	problem.”	

	 	 	 	 	–	Roger	Needham	

Meta-Lessons	

•  Cryptography	is	hard.	
•  Hire	an	expert,	or	use	an	exisEng	system	
(e.g.,	SSL,	SSH,	GnuPG).	

•  But:	Most	vulnerabiliEes	are	in	applicaEons	and	
sovware,	not	in	crypto	algorithms.	

BONUS	MATERIAL	

#8:	Traffic	Analysis	is	SEll	Possible	

•  EncrypEon	doesn’t	hide	sender,	recipient,	length,	
or	Eme	of	message.		(“meta-data”)	

SSH	

{l}K		

(handshake;	key	exchange)	
Client	 Server	

{l}K’	
{s}K		
{s}K’	

{\n}K		
{\nfoo	bar	\n$}K’	

SSH	
{\n}K		

Client	 Server	

{\nPassword:	}K’	
{q}K		
{p}K		

{l}K		

{e}K		

{4}K		
{\n}K		

{\nLast	login:	…\n	$\n}K’	

SSH	
{\n}K		

Client	 Server	

{\nPassword:	}K’	
{q}K		
{p}K		

{l}K		

{e}K		

{4}K		
{\n}K		

{\nLast	login:	…\n	$\n}K’	

Reveals	
length	of	
password.	

Reveals	+me	
between	
keystrokes.		
This	leaks	
par+al	
informa+on	
about	the	
password!	

Lessons	Summarized	

•  Don’t	design	your	own	crypto	algorithm.	
•  Use	authenEcated	encrypEon	(don’t	encrypt	
without	authenEcaEng).	

•  Use	crypto-quality	random	numbers.	
•  Don’t	derive	crypto	keys	from	passphrases.	
•  Be	secure	by	default.	
•  Be	careful	with	concatenaEon.	
•  Don’t	re-use	nonces/IVs.	Don’t	re-use	keys	for	
mulEple	purposes.	

•  EncrypEon	doesn’t	prevent	traffic	analysis	
(“metadata”).	

#7:	Don’t	re-use	nonces/IVs	

•  Re-using	a	nonce	or	IV	leads	to	catastrophic	
security	failure.	

Credit	card	numbers	in	a	database	

Aver	Base64	decoding	

Encrypted	credit	card	numbers	

Encrypted	credit	card	numbers	

ASCII:	…,	‘3’	=	0x33,	‘4’	=	0x34,	‘5’	=	0x35,	…	

Encrypted	credit	card	numbers	

ASCII:	‘0’	=	0x30,	…,	‘7’	=	0x37,	‘8’	=	0x38,	‘9’	=	0x39	

#7:	Don’t	re-use	nonces/IVs	

•  Re-using	a	nonce	or	IV	leads	to	catastrophic	
security	failure.	

WEP	

•  Early	method	for	encrypEng	Wifi:	WEP		(Wired	Equivalent	Privacy)		
–  Share	a	single	cryptographic	key	among	all	devices	
–  Encrypt	all	packets	sent	over	the	air,	using	the	shared	key	
–  Use	a	checksum	to	prevent	injecEon	of	spoofed	packets	

(encrypted traffic)

WEP	-	A	LiHle	More	Detail	

•  WEP	uses	the	RC4	stream	cipher	to	encrypt	a	TCP/IP	
packet	(P)	by	xor-ing	it	with	keystream	(RC4(K,	IV))	

	

IV,					P	⊕	RC4(K,	IV)	

A	Risk	of	Keystream	Reuse	

•  In	some	implementaEons,	IVs	repeat.	
–  If	we	send	two	ciphertexts	(C,	C’)	using	the	same	IV,	then	the	xor	of	

plaintexts	leaks	(P	⊕	P’	=	C	⊕	C’),	which	might	reveal	both	plaintexts	

�	Lesson:	Don’t	re-use	nonces/IVs	

IV,					P	⊕	RC4(K,	IV)	

IV,					P’	⊕	RC4(K,	IV)	

WEP	--	Even	More	Detail	

IV

RC4
key

IV encrypted packet

original unencrypted packet checksum

AHack	#2:	Spoofed	Packets	

•  AHackers	can	inject	forged	802.11	traffic	
–  Learn	Z	=	RC4(K,	IV)	using	previous	aHack	
–  Since	the	CRC	checksum	is	unkeyed,	you	can	then	create	valid	

ciphertexts	that	will	be	accepted	by	the	receiver	

	

IV,	(P,	CRC(P))	⊕	Z	

AHack	#3:	Packet	ModificaEon	

•  CRC	is	linear	
		⇒	CRC(P	⊕	Δ)	=	CRC(P)	⊕	CRC(Δ)		
				⇒	the	modified	packet	(P	⊕	Δ)	has	a	valid	checksum	

�	AHacker	can	tamper	with	packet	(P)	without	breaking	RC4	
	

(P,	CRC(P))	⊕	RC4(K)	

(P,	CRC(P))	⊕	RC4(K)	⊕	(Δ,	CRC(Δ))	

AHack	#4:	InducEve	Learning	

•  Learn	Z1..n	=	RC4(K,	IV)1..n	using	previous	aHack	
•  Then	guess	Zn+1;	verify	guess	by	sending	a	ping	packet	((P,	

CRC(P)))	of	length	n+1	and	watching	for	a	response	
•  Repeat,	for	n=1,2,…,	unEl	all	of	RC4(K,	IV)	is	known	

(P,	CRC(P))	⊕	(Z1..n,	0)	

(P,	CRC(P))	⊕	(Z1..n,	1)	

(P,	CRC(P))	⊕	(Z1..n,	255)	

:	

(pong)	

Credits:	Arbaugh,	et	al.	

AHack	#5:	ReacEon	AHacks	

•  TCP	ACKnowledgement	returned	by	recipient	
		⇔	TCP	checksum	on	modified	packet	(P	⊕	0x00010001)	is	valid	
					⇔	wt(P	&	0x00010001)	=	1		

�	AHacker	can	recover	plaintext	(P)	without	breaking	RC4	
	

P	⊕	RC4(K)	 P	⊕	RC4(K)	⊕	0x00010001	

(ACK)	

