
Software Security:
Reasoning About Code

CS 161: Computer Security
Prof. David Wagner

January 27, 2016

	
	
	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	

/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
												???																								*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	

/*	requires:	a	!=	NULL	&&	
					size(a)	>=	n	&&	
					for	all	j	in	0..n-1,	a[j]	!=	NULL	*/	
int	sumderef(int	*a[],	size_t	n)	{	
				int	total	=	0;	
				for	(size_t	i=0;	i<n;	i++)	
									total	+=	*(a[i]);	
				return	total;	
}	

char	*tbl[N];	/*	N	>	0,	has	type	int	*/	
	
	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	???	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N;	
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)	
				h	=	257*h	+	(*s++)	+	3;	
		return	h	%	N; 	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;				
		return	h	%	N; 	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N; 	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

Is the postcondition correct?
(a) Yes, (b) 0 <= retval is correct,
(c) retval < N is correct, (d) both are wrong.

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

What is the correct postcondition for hash()?
(a) 0 <= retval < N, (b) 0 <= retval,
(c) retval < N, (d) none of the above.
Discuss with a partner.

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
int	hash(char	*s)	{	
		int	h	=	17;																	/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	 Fix?

char	*tbl[N];	
	
/*	ensures:	0	<=	retval	&&	retval	<	N	*/	
unsigned	int	hash(char	*s)	{	
		unsigned	int	h	=	17;								/*	0	<=	h	*/	
		while	(*s)																		/*	0	<=	h	*/	
				h	=	257*h	+	(*s++)	+	3;			/*	0	<=	h	*/	
		return	h	%	N;	/*	0	<=	retval	<	N	*/	 		
}	
	
bool	search(char	*s)	{	
		unsigned	int	i	=	hash(s);	
		return	tbl[i]	&&	(strcmp(tbl[i],	s)==0);	
}	

Common Coding Errors

•  Memory safety vulnerabilities

•  Input validation vulnerabilities

•  Time-of-Check to Time-of-Use
(TOCTTOU) vulnerability (later)

Input Validation Vulnerabilities

•  Program requires certain assumptions
on inputs to run properly

•  Programmer forgets to check inputs are
valid => program gets exploited

•  Example:
– Bank money transfer: Check that amount

to be transferred is non-negative and no
larger than payer’s current balance

Access Control and
OS Security

CS 161: Computer Security
Prof. David Wagner

January 27, 2016

Types of Security Properties

•  Confidentiality
•  Integrity
•  Availability

Access Control

•  Some resources (files, web pages, …) are
sensitive.

•  How do we limit who can access them?

•  This is called the access control problem

Access Control Fundamentals

•  Subject = a user, process, …
(someone who is accessing resources)

•  Object = a file, device, web page, …
(a resource that can be accessed)

•  Policy = the restrictions we’ll enforce

•  access(S, O) = true
if subject S is allowed to access object O

Example

•  access(Alice, Alice’s wall) = true
access(Alice, Bob’s wall) = true
access(Alice, Charlie’s wall) = false

•  access(daw, /home/cs161/gradebook) = true
access(Alice, /home/cs161/gradebook) = false

Access Control Matrix

•  access(S, O) = true
if subject S is allowed to access object O

Alice’s wall Bob’s wall Charlie’s wall …
Alice true true false
Bob false true false
 …

Permissions

•  We can have finer-grained permissions,
e.g., read, write, execute.

•  access(daw, /cs161/grades/alice) = {read, write}
access(alice, /cs161/grades/alice) = {read}
access(bob, /cs161/grades/alice) = {}

/cs161/grades/alice
daw read, write
alice read
bob -

Access Control

•  Authorization: who should be able to
perform which actions

•  Authentication: verifying who is requesting
the action

Access Control

•  Authorization: who should be able to
perform which actions

•  Authentication: verifying who is requesting
the action

•  Audit: a log of all actions, attributed to a
particular principal

•  Accountability: hold people legally
responsible for actions they take.

Web security

•  Let’s talk about how this applies to web
security…

Structure of a web application
(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

How should we
implement access
control policy?

Option 1: Integrated Access Control
(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record �
username

access
check

access
check

access
check

Record username.
Check policy at each
place in code that
accesses data.

Option 2: Centralized Enforcement
(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record �
username

access
check

Record username.
Database checks
policy for each
data access.

Option 1: Integrated Access
Control

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php

...

databasecontroller

record �
username

access
check

access
check

access
check

Record username.
Check policy at each
place in code that
accesses data.

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php

...

databasecontroller

record �
usernam

e

access
check

Option 2: Centralized
Enforcement

Which option
would you pick?
Discuss.

Record username.
Database checks
policy for each
data access.

Analysis

•  Centralized enforcement might be less
prone to error
– All accesses are vectored through a central

chokepoint, which checks access
–  If you have to add checks to each piece of

code that accesses data, it’s easy to forget a
check (and app will work fine in normal usage,
until someone tries to access something they
shouldn’t)

•  Integrated checks might be more flexible

Complete mediation

•  The principle: complete mediation
•  Ensure that all access to data is mediated

by something that checks access control
policy.
–  In other words: the access checks can’t be

bypassed

Reference monitor

•  A reference monitor is responsible for
mediating all access to data

•  Subject cannot access data directly;
operations must go through the reference
monitor, which checks whether they’re OK

subject reference�
monitor object

Criteria for a reference monitor

Ideally, a reference monitor should be:
•  Unbypassable: all accesses go through

the reference monitor
•  Tamper-resistant: attacker cannot subvert

or take control of the reference monitor
(e.g., no code injection)

•  Verifiable: reference monitor should be
simple enough that it’s unlikely to have
bugs

Example: OS memory protection

•  All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU memory�
controller RAM

Unbypassable? ✔

Example: OS memory protection

•  All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU memory�
controller RAM

Tamper-resistant? ✔

Example: OS memory protection

•  All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU memory�
controller RAM

Verifiable? ✔

TCB

•  More broadly, the trusted computing
base (TCB) is the subset of the system
that has to be correct, for some security
goal to be achieved
– Example: the TCB for enforcing file access

permissions includes the OS kernel and
filesystem drivers

•  Ideally, TCBs should be unbypassable,
tamper-resistant, and verifiable

Coming Up …
•  Homework 1 due Monday
•  Buffer overrun review session, Thursday,

6-8pm, 155 Dwinelle

