
Popa & Wagner
Spring 2016

CS 161
Computer Security Homework 2

Due: Monday, February 22nd, at 11:59pm

Instructions. This homework is due Monday, February 22nd, at 11:59pm. It must be
submitted electronically via Gradescope (and not in person, in the drop box, by email, or
any other method). This assignment must be done on your own.

Please put your answer to each problem on its own page, in the order that the problems
appear. For instance, if your answer to every problem fits on a single page, your solution
will be organized as follows:

page 1: your solution to problem 1
page 2: your solution to problem 2
page 3: your solution to problem 3
page 4: your solution to problem 4
page 5: your optional feedback (“problem 5”)

If your solution to problems 3 and 4 both take up two pages, your solution would be organized
as follows:

page 1: your solution to problem 1
page 2: your solution to problem 2
page 3: first page of your solution to problem 3
page 4: second page of your solution to problem 3
page 5: first page of your solution to problem 4
page 6: second page of your solution to problem 4
page 7: your optional feedback (“problem 5”)

Scan your solution to a PDF—or, write it electronically and save it as a PDF. Then, upload
it to Gradescope.

Problem 1 Web Security (30 points)

(a) In class we learned about Same Origin Policy for cookies and the DOM and how it
protects different sites from each other. Your friend says that you should be careful
of visiting any unfamiliar website, because their owners can read cookies from any
other websites they want. Is your friend right? Explain in 1–2 sentences why or
why not.

(b) Google has a website builder service at sites.google.com/[NAME]. On this service,
you can choose your own NAME and upload any script or html that you desire.
Why is this a better design than putting user sites on google.com/sites/[NAME]?

Modified 2/17: We removed the hint, as it was confusing, and reworded the question.

Page 1 of 5



(Not for credit: Even this design is not perfect. Once you solve this question, you
might enjoy thinking about what the limitations of this design are and how it could
be further improved. But we’re not asking you to write about this in your answer;
that’s just a thought exercise for your own understanding.)

(c) You are the developer for a new fancy payments startup, and you have been tasked
with developing the web-based payment form. You have set up a simple form with
two fields, the amount to be paid and the recipient of the payment. When a user
clicks submit, the following request is made:

https://www.cashbo.com/payment?amount=<dollar amount>&recipient=<friend’s username>

You show this to your friend Eve, and she thinks there is a problem. She later sends
you this message:

Hey, check out this funny cat picture. tinyurl.com/as3fsjg

You click on this link, and later find out that you have paid Eve 1 dollar. (TinyURL
is a url redirection service, and whoever creates the link can choose whatever url it
redirects to.)

How did Eve steal one dollar from you? What did the tinyurl redirect to? Write
the link in your solution.

(d) Continuing from part (c), how could you defend your form from the sort of attack
listed in part (c)? Explain in 1–2 sentences.

Problem 2 XSS: The Game (15 points)
Visit https://xss-game.appspot.com/ and complete the first 4 levels. This game is
similar to Project 1, except you’ll be exploiting XSS vulnerabilities instead of buffer
overflows. You may use the hints provided by the game.

For each level, describe the vulnerability and how you exploited it in 2–3 sentences.
Show the code that you used or what you typed into the input fields.

We recommend using the Chrome browser for this. (We had problems getting past level
3 in Firefox.)

Problem 3 Biometrics and Passwords (25 points)
Biometric authentication schemes often produce a “confidence” value that trades off
between “false positive” and “false negative” errors. A “false positive” is when the
system accepts someone when it should not have; a “false negative” is when the system
doesn’t accept someone it should have. A false negative prevents an authorized user
from logging in; a false positive allows an unauthorized user to access the system.

Password authentication tends to be much more “black and white”. If you mis-type
even a single letter when entering your password, your login will be rejected.

Homework 2 Page 2 of 5 CS 161 – Sp 16

https://xss-game.appspot.com/


(a) How might you modify standard password authentication to afford a sort of “con-
fidence” level, in light of the potential for users to inadvertently mis-type part of
their password?

(b) What effects would your modification (in part (a)) have on the security of password
authentication?

(c) One simplistic model for how users select passwords is that there is some universal
dictionary of 220 possible passwords, and each user randomly picks a password
by choosing uniformly at random from this dictionary.1 Assume that all of the
passwords in this dictionary are 10 characters long, and that people have a 1%
error rate per character they type, i.e., each character they type independently has
a 0.01 probability of being mis-typed. Suppose that we want a false negative rate
that is below 0.5%, i.e., below 0.005. Describe what specific parameters your scheme
should use, and list the false positive rate your scheme will have at this parameter
setting, assuming the attacker gets to make one try at guessing the password. To
simplify your calculation, assume that every pair of passwords in the dictionary
differ in at least 3 positions.

Problem 4 Fuzz testing (30 points)
This question will teach you about fuzz testing, a method for finding (some) memory-
safety security vulnerabilities.

(a) First, you are going to fuzz-test a simple C program that has a vulnerability in it, us-
ing the American Fuzzy Lop (AFL) fuzzer—a fuzzer that is used in industry. We’ve
set up a virtual machine for you. Grab the VM from /home/tmp/daw/FuzzingVM.ova

on instructional machines and import it into VirtualBox. Log in with SSH to user-
name neo and port 2222, with password cgciivf9, like so:

ssh -p2222 neo@127.0.0.1

Change into the part1/ directory, where you will find imgtype, a simple program
that inspects an image file and guesses what type of image it is.

AFL works by starting from one or more seed files : files that contain valid inputs
for the program being tested. We’ve chosen a seed file for you: a minimal JPEG
image (in/jpeg.jpg). AFL works by making random changes to this seed file,
running the program on each variant of the file, and seeing if any of them cause
the program to crash. The idea is that inputs that cause the program to crash are
often an indicator of an underlying memory-safety bug or vulnerability.

Use AFL to find the vulnerability in imgtype. You can use a command like

timeout -s INT 30s afl-fuzz -i in -o out ./imgtype @@

This will run AFL for 30 seconds, using the seed files in the directory in, and storing
various output to the directory out. The status screen gives you some indication

1This model is pretty crude, but let’s run with it, for purposes of this homework question.

Homework 2 Page 3 of 5 CS 161 – Sp 16



of progress. The most helpful field is the part in the upper-right that says uniq

crashes—if this has a non-zero number, then AFL has found at least one input
that triggers a crash. AFL will the input files that it has discovered cause a crash
in out/crashes.

Look at one of them, and use it to identify the line of code in imgtype.c that
contains the vulnerability. You might try running the program under gdb with that
input file and then generate a backtrace. Or, you can use valgrind, which outputs
a handy backtrace:

valgrind ./imgtype out/crashes/whatever

Each line of the backtrace represents one stack frame, and indicates a corresponding
line of code (e.g., imgtype.c:67 represents line 67 of imgtype.c). Generally, the
top-most line in the backtrace that is in imgtype.c is the best place to start looking
for the bug. Look at that line of code in imgtype.c and the surrounding lines to
see if you can spot what the bug in the code is.

In your answer, write down: (a) the line of code in imgtype.c where the vulner-
ability occurs, (b) an English description of what the vulnerability is, and (c) a
description of what conditions the input file must satisfy to trigger the memory-
safety failure.

(b) Generation-based fuzzing works as follows: in each iteration, it generates a random
input file, runs the program on that input, and checks whether the program crashes.
Suppose we implement a particularly naive form of generation-based fuzzing, where
in each iteration we generate every byte of the file uniformly and independently at
random. Then, we apply this to the imgtype program from part (a).

About how many iterations would we need to perform, to find the vulnerability in
imgtype? You can estimate this by computing the expected number of iterations
until we find the vulnerability. You can assume that the program crashes whenever
we feed it any input that writes out of bounds of any buffer or array. If we can
perform 1000 iterations per second, about how long would it take for this naive
generation-based fuzzer to find the vulnerability?

(c) Mutation-based fuzzing is a little different. We start with a seed file, a valid input
file. In each iteration, the fuzzer randomly makes a small change to the seed file,
runs the program on the result, and checks whether the program crashes.

Suppose we implement a naive mutation-based fuzzer where each iteration works
as follows: for each byte in the seed file, with probability 0.99 we leave that byte
unchanged; with probability 0.01, we change to some other random byte (with all
possible values equally likely). Suppose we apply this to the imgtype program
from part (a). About how many iterations would we need to perform, to find the
vulnerability in imgtype? If we can perform 1000 iterations per second, about how
long would it take for this naive mutation-based fuzzer to find the vulnerability?

(d) Now, we’ll have you fuzz a real, large program: in this case, you’ll be fuzzing an

Homework 2 Page 4 of 5 CS 161 – Sp 16



older version of ImageMagick’s convert program, which converts between image
formats. Your task is to find one or more vulnerabilities in convert’s GIF parser—
i.e., to find a malicious input evil.gif such that the command convert evil.gif

whatever.pnm triggers a crash.

Log into the VM and switch to the part4 directory. Put one or more seed GIF files
in the in/ directory. Then, fuzz for a few minutes, or until you find a vulnerability,
by running

./start-fuzzing

You should be able to find at least one vulnerability.

In your writeup, describe (a) how you selected your seed files, and (b) include a
stack backtrace corresponding to each vulnerability you found.

Hints: Feel free to get creative in your choice of seed file(s). It’s to your advantage
to choose seed files(s) that are as small as possible, as the fuzzer will be able to try
more iterations per second. One good heuristic is to take an ordinary GIF file and
truncate it:

dd if=bigfile.gif of=in/small.gif bs=1 count=128

If you pick your seed file(s) well, you should be able to find a vulnerability or two
within a few minutes of fuzzing. You can always stop AFL by pressing Ctrl-C.

Beware that not all crashes reported by AFL are real. It seems that AFL some-
times gets confused and reports an input file as triggering a crash, when it didn’t
actually cause a serious problem. Therefore, make sure you run convert by hand
on each candidate crasher-file to see if it does indeed cause a memory-safety vulner-
ability. For this part, we’ve helpfully compiled convert to use Address Sanitizer
(ASAN), so if a memory-safety error occurs, you’ll see an output message (ERROR)
and a backtrace when you run convert on that input file. Due to incompatibilities
between Valgrind and ASAN, you won’t be able to use Valgrind with convert, but
you shouldn’t need to, as ASAN already does everything Valgrind does.

You can run the fuzzing VM on one of the hiveNN.cs.berkeley.edu instructional
machines, but please check first that no one is actively using the machine: log into
the machine and run top first. Fuzzing is CPU-intensive, so if you see someone else
actively using the machine, pick a different machine.

Problem 5 Feedback (0 points)
Optionally, feel free to include feedback. What’s the single thing we could do to make
the class better? Or, what did you find most difficult or confusing from lectures or the
rest of class, and what would you like to see explained better?

Homework 2 Page 5 of 5 CS 161 – Sp 16


