1

Network #1: Ethernet, DHCP, ARP, and WiFi

Meme of the Day

Computer Science 161 Fall 2016

Popa and Weaver

"Some speak of an Armageddon; A time when humans will build machines they neither understand nor control.

To myself I whisper, 'We already have.'" - Taylor Swift

Meme of the Day (True: It's called "Machine Learning")

Computer Science 161 Fall 2016

Outline

Computer Science 161 Fall 2016

- Today's Focus, the low level LAN: Physical and Link Layer
- Ethernet
 - And then Wireless Ethernet
- Broadcast networks and packet injection
- Wireless security and (in)security
- The Key Broadcast Protocols:
 - DHCP:
 - How do I know what I should be
 - ARP:
 - How do I find out who to talk to?
- Fixing Broadcast: Smart Switches

Computer Science 161 Fall 2016

- Step 1, join the Wireless Network:
- Your computer shouts out:
 - "Hey, does Wireless Network X exist?"
- Wireless points continually shout out:
 - "Hey, I'm Wireless Network Y, Join Me"
- If either match up...
 - Your computer then joins the network
 - **Optionally** performs a cryptographic negotiation

Computer Science 161 Fall 2016

- Step 2, Configure Your Connection:
- Your computer shouts out on the *local* network:
 - "Hey, anybody, what basic configuration do I need to use?"
 - Internet address (IP address)
 - Gateway (where should I send packets destined to the Internet)
 - DNS server (the system which maps "www.google.com" to an IP address (eg, 102.14.183.12 for IPv4 (32b value, presented as 4 integers from 0-255), cafe:f00d:f00d:000f:02:21:1a:2 (128b value, presented as 8 hex groups of 16b each) for IPv6
- Some system on the local network says back:
 - Here is your configuration, enjoy

Computer Science 161 Fall 2016

- Step 3, Generate DNS request
 - DNS uses the UDP Internet Protocol: Unreliable datagrams
- Your computer sends a message to the configured DNS server (Recursive Resolver)
 - Hey, what is the IP address for "www.google.com"?
- The DNS server then searches the general Internet
 - In an annoying disturbed process I'll talk about on Thursday
- The DNS server than answers back:
 - "www.google.com" is here....

Computer Science 161 Fall 2016

- Step 4, Establish a TCP connection to the remote host
 - TCP is an in-order, reliable Internet protocol with congestion control
- Your machine sends a TCP "SYN" request to the Google server
 - Google's server responds with a "SYN/ACK"
 - Your machine then replies with an "ACK"
- After this 3-way handshake, your computer then starts to talk to the web server

Computer Science 161 Fall 2016

- Step 5: Negotiate an encrypted TLS session over the TCP connection
- Your computer says:
 - "I want to use an encrypted connection to this host"
- Google replies with:
 - "OK, here's a certificate that proves my public key belongs to me, let's start talking"
- Handshake continues back and forth until the two sides agree on a common cryptographic key

- Computer Science 161 Fall 2016
 - Step 6: Now its HTTP requests
 - Your computer says:
 - I want to fetch the url / for the host www.google.com
 - Google replies with:
 - "OK, here you go..."
 - Now your browser starts running on the data
 - And this gets into the web security stuff much later in the course...

Layers And The Network

- The network breaks things up into abstraction layers
 - High level layers avoid having to know much about the lower level layers
- Your computer sees just high level operations
 - Open a network connection
 - Open an encrypted network connection
- Layers isolate things
- Major layers:
 - TCP or UDP
 - IP
 - Ethernet

Packets and The Network

- Modern networks break communications up into packets
 - For our purposes, packets contain a variable amount of data up to a maximum specified by the particular network
- The sending computer breaks up the message and the receiving computer puts it back together
 - So the software doesn't actually see the packets per-se
 - Network itself is *packet switched*: sending each packet on towards its next destination
- Other properties:
 - Packets are received *correctly* or not at all in the face of *random* errors
 - The network does not enforce correctness in the face of adversarial inputs: They are checksums not cryptographic MACs.
 - Packets may be unreliable and "dropped"
 - Its up to higher-level protocols to make the connection reliabls

The Basic Ethernet Packet

- An Ethernet Packet contains:
 - A preamble to synchronize data on the wire
 - We normally ignore this when talking about Ethernet
 - 6 bytes of destination MAC address
 - In this case, MAC means media access control address, not message authentication code!
 - 6 bytes of source MAC address
 - Optional 4-byte VLAN tag
 - 2 bytes length/type field
 - 46-1500B of payload

DST MAC	SRC MAC	VLAN	Туре	PAYLOAD
---------	---------	------	------	---------

The MAC Address

Computer Science 161 Fall 2016

- The MAC acts as a device identifier
 - The upper 3 bytes are assigned to a manufacturer
 - Can usually identify product with just the MAC address
 - The lower 3 bytes are assigned to a specific device
 - Making the MAC a de-facto serial #
- Usually written as 6 bytes in hex:
 - e.g. 13:37:ca:fe:f0:0d
- A device should ignore all packets that aren't to itself or to the broadcast address (ff:ff:ff:ff:ff:ff)
 - But almost all devices can go into promiscuous mode
 - This is also known as "sniffing traffic"
- A device generally should only send with its own address
 - But this is enforced with software and can be trivially bypassed when you need to write "raw packets"

The Hub...

- In the old days, Ethernet was simply a shared broadcast medium
 - Every system on the network could hear every sent packet
- Implemented by either a long shared wire or a "hub" which repeated every message to all other systems on the network
 - Thus the only thing preventing every other computer from listening in is simply the network card's default to ignore anything not directed at it
- The hub or wire is incapable of enforcing senders either
 - Any sender could simply lie about it's MAC address when constructing a packet

The Hub Yet Lives!

- WiFi is effectively "Ethernet over Wireless"
 - With optional encryption which we will cover later
- Open wireless networks are just like the old Ethernet hub:
 - Any recipient can hear all the other sender's traffic
 - Any sender can use any MAC address it desires
- With the added bonus of easy to hijack connections
 - By default, your computer sends out "hey, is anyone here" looking for networks it knows
 - For open networks, anybody can say "Oh, yeah, here I am" and your computer connects to them

Rogue Access Points...

- Since unsecured wireless has no authentication...
 - And since devices by default shout out "hey, is anyone here network X"
- You can create an AP that simply responds with "of course I am"
 - The mana toolkit: https://github.com/sensepost/mana
- Now simply relay the victim's traffic onward
 - And do whatever you want to any unencrypted requests that either happen automatically or when the user actually does something
- I suspect I've seen this happening around Berkeley
 - Seen an occasional unencrypted version of a password protected network I'd normally use
- Recommendations:
 - Do not remember unsecured networks
 - Do not have your computer auto-join open networks

tcpdump

- The tcpdump program allows you to see packets on the network
 - It puts your computer's card into promiscuous mode so it ignores MAC addresses
- You can add additional filters to isolate things
 - EG, only to and from your own IP
 - sudo tcpdump -i en0 host {myip}
- Note: this is wiretapping
 - DO NOT RUN on a random open wireless network without a filter to limit the traffic you see
 - Only run without filters when connected to your own network
 - But do run it when you get home!

Broadcast is Dangerous: Packet Injection

Computer Science 161 Fall 2016

- If your attacker can see your packets...
 - It isn't just an information leakage
- Instead, an attacker can also *inject* their own packets
- The low level network does not enforce any *integrity or authenticity*
- So unless the high level protocol uses cryptographic checks...
- The target simply accepts the *first* packet it receives as valid!
 - This is a "race condition attack", whichever packet arrives first is accepted

Packet Injection in Action: Airpwn

HTTP 200 OK Here's the goatee image it will be seared into your brain forever... MUAHAHAHAHAHAHAH

But Airpwn ain't a joke...

- It is trivial to replace "look for .jpg request and reply with redirect to goatse" with "look for .js request and reply with redirect to exploitive javascript"
 - This JavaScript would start running in the target's web browser, profile the browser, and then use whatever exploits exist
- The requirements for such an attack:
 - The target's traffic must not be encrypted
 - The ability to see the target's traffic
 - The ability to determine that the target's traffic belongs to the target
 - The ability to inject a malicious reply

So Where Does This Occur?

Computer Science 161 Fall 2016

- Open wireless networks
 - E.g. Starbucks, and any wireless network without a password
 - Only safe solution for open wireless is **only** use encrypted connections
 - HTTPS/TLS, ssh, or a Virtual Private Network to a better network
- On backbones controlled by nation-state adversaries!
 - The NSA's super-duper-top-secret attack tool, QUANTUM is *literally* airpwn without the goatse!
 - Not an exaggeration: Airpwn only looks at single packets, so does QUANTUM!

lt's also *too* easy

- Which is why it isn't an assignment!
- Building it in scapy, a packet library in python:
 - Open a sniffer interface in one thread
 - Pass all packets to a separate work thread so the sniffer doesn't block
 - For the first TCP data packet on any flow destined on port 80
 - Examine the payload with a simple regular expression to see if its a fetch for an image (ends in .jpg or .gif) and not for our own server
 - Afterwards whitelist that flow so you ignore it
 - If so, construct a 302 reply
 - Sending the browser to the target image
 - And create a fake TCP packet in reply
 - Switch the SYN and ACK, ports, and addresses
 - Set the ACK to additionally have the length of the request
 - Inject the reply

Detecting Injected Packets: Race Conditions

- Clients can detect an injected packet
- Since they still see the original reply
- Packets can be duplicated, but they should be consistent
 - EG, one version saying "redirect", the other saying "here is contents" should not occur and represents a *necessary* signature of a packet injection attack
- Problem: often detectable too late
 - Since the computer may have acted on the injected packet in a dangerous way before the real reply arrives
- Problem: nobody does this in practice
 - So you don't actually see the detectors work
- Problem: "Paxson's Law of Internet Measurement"
- "The Internet is weirder than you think, even when you include the effects of Paxson's Law of Internet Measurement"
- Detecting bad on the Internet often ends up inadvertently detecting just odd: Things are always more broken then you think they are

Wireless Ethernet Security Option: WPA2 Pre Shared Key

- Popa and Weaver
- This is what is used these days when the WiFi is "password protected"
 - The access point and the client have the same pre-shared key (called the PSK key)
 - Goal is to create a shared key called the PTK (Pairwise Transient Key)
- This key is derived from a combination of both the password and the SSID (network name)
 - PSK = PBKDF2(passphrase, ssid, 4096, 256)
- PBKDF2 is effectively a hash function that takes a passphrase, a salt, an iteration count, and an output size
 - The SSID as salt ensures that the same password on different network names is different
 - The iteration count assures that it is *slow*
 - Any attempt to brute force the passphrase should take a lot of time per guess

The WPA 4-way Handshake

Icons made by Freepik and Iconic from www.flaticon.com CC 3.0 BY26

Remarks

- This is only secure if an eavesdropper doesn't know the pre shared key
 - Otherwise an eavesdropper who sees the handshake can perform the same computations to get the transport key
 - However, by default, network cards don't do this: This is a "do not disturb sign" security. It will keep the maid from entering your hotel room but won't stop a burglar
- The MIC is really a MAC, but as MAC also refers to the MAC address, they use MIC in the description
- The GTK is for broadcast
 - So the AP doesn't have to rebroadcast things, but usually does anyway

Actually Making it Secure: WPA Enterprise

Computer Science 161 Fall 2016

- When you set up Airbears 2, it asks you to accept a public key certificate
 - This is the public key of the authentication server
- Now before the 4-way handshake:
 - Your computer first handshakes with the authentication server
 - This is secure using public key cryptography
 - Your computer then authenticates to this server
 - With your username and password
- The server now generates a unique key that it both tells your computer and tells the base station
 - So the 4 way handshake is now secure

But Broadcast Protocols Make It Worse...

- By default, both DHCP and ARP broadcast requests
 - Sent to **all** systems on the local area network
- DHCP: Dynamic Host Control Protocol
 - Used to configure all the important network information
 - Including the DNS server: If the attacker controls the DNS server they have complete ability to intercept all traffic!
 - Including the Gateway which is where on the LAN a computer sends to: If the attacker controls the gateway
- ARP: Address Resolution Protocol
 - "Hey world, what is the Ethernet MAC address of IP X"
 - Used to find both the Gateway's MAC address and other systems on the LAN

So How Do We Secure the LAN?

Computer Science 161 Fall 2016

- Option 1: We don't
 - Just assume we can keep bad people out
 - This is how most people run their networks: "Hard on the outside with a goey chewy caramel center"
- Option 2: smart switching and active monitoring

The Switch

Computer Science 161 Fall 2016

- Hubs are very inefficient:
 - By broadcasting traffic to all recipients this greatly limits the aggregate network bandwidth
- Instead, most Ethernet uses switches
- The switch keeps track of which MAC address is seen where
- When a packet comes in:
 - If there is no entry in the MAC cache, broadcast it to all ports
 - If there is an entry, send it just to that port
- Result is vastly improved bandwidth
 - All ports can send or receive at the same time

Smarter Switches: Clean Up the Broadcast Domain

Computer Science 161 Fall 2016

- Modern high-end switches can do even more
- A large amount of potential packet processing on items of interest
- Basic idea: constrain the broadcast domain
 - Either filter requests so they only go to specific ports
 - Limits other systems from listening
 - Or filter replies
 - Limits other systems from replying
- Locking down the LAN is very important practical security
 - This is *real* defense in depth: Don't want 'root on random box, pwn whole network'
 - This removes "*pivots*" the attacker can try to extend a small foothold into complete network ownership
- This is why an Enterprise switch may cost \$1000s yet provide no more real bandwidth than a \$100 Linksys.

Smarter Switches: Virtual Local Area Networks (VLANs)

Computer Science 161 Fall 2016

- Our big expensive switch can connect a lot of things together
 - But really, many are in *different* trust domains:
 - Guest wireless
 - Employee wireless
 - Production desktops
 - File Servers
 - etc...
- Want to isolate the different networks from each other
 - Without actually buying separate switches

VLANs

- An ethernet port can exist in one of two modes:
 - Either on a single VLAN
 - On a trunk containing multiple specified VLANs
- All network traffic in a given VLAN stays only within that VLAN
 - The switch makes sure that this occurs
- When moving to/from a trunk the VLAN tag is added or removed
 - But still enforces that a given trunk can only read/write to specific VLANs

Putting It Together: If I Was In Charge of UC networking...

- I'd isolate networks into 3+ distinct classes
 - The plague pits (AirBears, Dorms, etc)
 - The mildly infected pits (Research)
 - Administration

Computer Science 161 Fall 2010

- Administration would be locked down
 - Separate VLANs
 - Restricted DHCP/system access
 - Isolated from the rest of campus