
Computer Science 161 Fall 2016 Popa and Weaver

Lecture #5: 
On Safes, 

Sandboxes, and Spies

1

Computer Science 161 Fall 2016 Popa and Weaver

Now that we have some concepts...

Its time for a more deep dive
• Use this as a review of what we've learned so far and putting it into

action

• Deep Dive #1: Safes

• Requirements

• Cost/benefit tradeoffs

• Detection & response countermeasures

• Deep Dive #2: Sandboxes

• Detailed concept and objectives

• How to Sandbox on Linux, Old School

• How to Sandbox on Linux, New School

• Deep Dive #3: Spies
2

Computer Science 161 Fall 2016 Popa and Weaver

So You Want to Buy a Safe...

• What are the actual requirements?

• Protect against:

• Fire damage?

• Low Grade Threats?

• Legal Liability?

• Determined Theft?

3

Computer Science 161 Fall 2016 Popa and Weaver

Fire Damage

• Most "safes" you buy at Office Depot are not actual safes...

• They are not rated nor even well designed to keep out a burglar

• Rather, they are "fire safes": designed to prevent damage in case of a
file

• Often rated by Underwriters Laboratories (UL): means tested to a given standard

• Two big categories

• Documents/guns/etc: Keeps temperatures below 350F

• Will keep that passport from burning

• Data safes: Keeps temperatures below 125F and humidity below 80%

• Computer media much more delicate

• Testing also indicates duration

• Security lesson: Know what you are protecting and what your threat is

• Don't expect a document-rated fire safe to keep a hard drive safe from damage in a fire

• Don't expect either to meaningfully stop a teenager with a crowbar

• And do your threat modeling before you commit to a security
procedure!

4

Computer Science 161 Fall 2016 Popa and Weaver

Low-Threat Entry & 
Legal Liability
• Some safes are concerned with rather

low-threat attackers

• Toddlers and the like

• Classic example are CA state mandated
"gun" locks

• A long list of "approved" devices

• That often can't even keep a toddler out!

• Security Lesson: Checkbox security and
real security are often two different things

5

Computer Science 161 Fall 2016 Popa and Weaver

High Threat: 
Ratings
• UL Listed ratings for various level of attackers

• Residential Security Container:

• 5 minutes by a professional with hammer etc

• Ratings up from there

• TL-15

• 15 minutes with power tools

• TRTL-30

• 30 minutes with power tools or cutting torch

• TXTL-60X6

• 60 minutes, working on all 6 sides, and the attacker even gets  
to use 8 ounces of nitroglycerine!

• These are conservative ratings:

• They assume an attacker with the proper set of tools  

and knowledge of the safe's construction oe

• Shannon's Maxim: "The enemy knows the system"

• Kerckhoffs's Principle: "A cryptosystem should be secure even if everything about the system, except the key, is public

knowledge."
6

Computer Science 161 Fall 2016 Popa and Weaver

Detection and Response

• A safe doesn't have to be a passive
device!!

• In addition to the burglar alarms

• Relockers: Fail closed when under
attack

• EG, a piece of glass which holds spring-loaded

bolts open

• If the glass ever breaks, the additional bolts

close and stay closed

• Very expensive false positives!
7

Computer Science 161 Fall 2016 Popa and Weaver

The Sandbox...

• You have a lot of crappy code that take input
from hostile users

• Often written in C/C++

• In an ideal world, you'd extinguish the
dumpster fire...

• But if it is only burning within the dumpster, is it really

harmful?

• The sandbox generally covers an entire
process

• That way one can take advantage of operating-specific

features that allow a process to restrict what it is allowed
to do

8

Computer Science 161 Fall 2016 Popa and Weaver

Why Sandbox At All?

• The sandbox is mostly good at making C/C++ memory
exploits no longer exploitable

• Now the attacker needs to both exploit the C code AND exploit a weakness
in the sandbox

• Defense in depth...

• But why bother with defense in depth?

• Because its cheaper!

• Cheaper to keep using the same crappy C and C++ code and put it in a

letterbox than it is actually rewriting the code in a secure language!

9

Computer Science 161 Fall 2016 Popa and Weaver

Sandbox Objectives

• From the Chromium Project:  
https://www.chromium.org/developers/design-documents/
sandbox

• Don't Reinvent the Wheel

• Principle of Least Privilege

• Assume Sandboxed Code is Malicious Code

• Be Nimble

• Emulation is Not Security

10

Computer Science 161 Fall 2016 Popa and Weaver

Don't Reinvent The Wheel

• Modern operating systems offer different mechanisms for
containment

• Modifying the OS to ad a new containment feature is going to be a loser: 
you will get it wrong

• When security systems require modifying the OS its often a big danger sign

11

Computer Science 161 Fall 2016 Popa and Weaver

The Principle of Least Privilege

• In an ideal world, running the code in a sandbox should not require
any more privileges than a normal user

• This is not the case on old-school Linux

• This is the case on new-school Linux and Windows

• This is critical: You don't want your sandboxing to make things
worse!

• If your sandbox does require root you must design it to give up those privileges

• Also, whatever mechanism must be inheritable:

• Any process launched by a sandbox process must operate under the same strict

restrictions

• OR the sandboxed process MUST NOT be able to launch another process!

12

Computer Science 161 Fall 2016 Popa and Weaver

Assume Sandboxed Code is 
Malicious Code
• The sandbox must work if the code within it is

compromised by an attacker

• So simply assume for the purposes of the sandbox that the code you are

running is already compromised

• Must ensure complete mediation:

• After the sandbox itself hands control over to the running code, that code

must not be able to access any resource beyond that necessary to perform
its operation

• And that which it can access must be checked and treated as potentially
hostile input

13

Computer Science 161 Fall 2016 Popa and Weaver

Be Nimble

• Sandboxing adds overhead...

• But its often important to not add too much overhead, otherwise it gets

unused

• So make an assumption:

• For correctness, you must assume malicious code

• For performance, you can assume only correct code

• Allows you to optimize your performance for the "good"
case

14

Computer Science 161 Fall 2016 Popa and Weaver

Emulation is Not Security

• Emulation primitives (Virutal Machines etc) are often not
designed as security sandboxes!

• Relying on something misdesigned for sandboxing can be a problem!

15

Computer Science 161 Fall 2016 Popa and Weaver

The Broker and the 
Target
• Most sandboxes separate out the problem into separate

components

• That run as separate processes

• The Broker is the reference monitor/trusted computing base

• Its job is to start up the targets

• ALL requests for anything sensitive in the target must be passed to the broker

• The target is the sandboxed code

• Establish communication with the broker

• Provide an API for talking to the broker

• And then yield all other privileges

16

Computer Science 161 Fall 2016 Popa and Weaver

Robustness...

• The sandboxed process also can now fail gracefully

• And not take the rest of the program down with it

• So you design around the notions of sandboxed programs failing

17

Computer Science 161 Fall 2016 Popa and Weaver

And Don't Reinvent the Wheel #2: 
Just Download Someone Else's!
• Mozilla is finally adding sandboxing to Firefox...

• Thanks to Mitar for the note

• For Windows:

• Wrapper around Chrome's sandbox

• For Linux:

• Uses seccomp as the building block

18

Computer Science 161 Fall 2016 Popa and Weaver

Old School Unix Sandboxing: 
the chroot jail
• People have wanted sandboxes for a long time...

• Far longer than the OSs have provided fine grained mediation necessary to

create sandboxes

• The gen-1 Unix Sandbox:

• The chroot system call changes the definition / for the invoking process

• Thus it enforces a property:

• The process (and all processes it invokes, directly or indirectly) can not read

or write to any new file outside the new directory

• But can still access existing files

19

Computer Science 161 Fall 2016 Popa and Weaver

Limitations of chroot

• It is a privileged operation!

• Because you can do things that would compromise the system otherwise:

• Create a directory with a file name etc/sudoers with the appropriate context

• Now chroot to that directory

• Now invoke sudo

• Voila, you have root!

• So any program using chroot must then drop it privileges to run as "nobody" or an otherwise unknown

user

• It does not affect system call operation

• So a "jailed" process can still access the network, call the kernel (and therefore perhaps kernel

bugs), etc etc etc...

• The "nobody" account actually still has privileges! Like the ability to interfere with other

processes also owned by the "nobody" user
20

Computer Science 161 Fall 2016 Popa and Weaver

New School Linux Sandbox 
Building: seccomp
• Desired property:

• An application can read and write to specified "file descriptors", but otherwise invoke

no other system calls

• File descriptors are more than just files but can be general communication pipes between

processes

• seccomp enables a process to lock itself out of the system call
interface:

• Enables read() and write() on open file descriptors

• Enables exit()

• Everything else is blocked

• An alternative form allows specifying a filter to only block some system calls, but this loses the

elegance of
21

Computer Science 161 Fall 2016 Popa and Weaver

Using seccomp to create a sandbox

• Split things conceptually into a broker and one or more
targets

• The targets are the sandboxed elements

• The broker controls the targets and is the trusted base

• The broker starts up the targets

• Using fork or clone

• Establishes communication channels to the targets

• Starts the target processes running

• The target process then invokes seccomp to give up any
privileges

22

Computer Science 161 Fall 2016 Popa and Weaver

Communication:

Lots to chose from...

23

• Standard Unix pipes/file descriptors

• Basically shove bits to/from the sandboxed process

• Just like a network program

• Shared Memory

• A common pool of memory that both can read and write to

• Need to also use a semaphore to ensure coherency

Computer Science 161 Fall 2016 Popa and Weaver

Drawing Time...

24

Computer Science 161 Fall 2016 Popa and Weaver

Man Pages!

• "man x" is often the most important starting point

• Then you start googling for stack overflow examples

• Required reading man pages:

• chroot

• seccomp

• shm_overview

25

Computer Science 161 Fall 2016 Popa and Weaver

Bugging and Physical Security: 
The Stuff of Spies
• Going to be mostly sans-slides:

• Notion of a SCIF/secured facility

• History of physical bugs

• How to bug someone today

• Inspired by this great essay:

• https://tisiphone.net/2016/09/08/why-do-smartphones-make-great-spy-

devices/

26

Computer Science 161 Fall 2016 Popa and Weaver

SCIF

27

Computer Science 161 Fall 2016 Popa and Weaver

The Great Seal Bug

28

Computer Science 161 Fall 2016 Popa and Weaver

29

Computer Science 161 Fall 2016 Popa and Weaver

30

Computer Science 161 Fall 2016 Popa and Weaver

31

Computer Science 161 Fall 2016 Popa and Weaver

The GUNMAN Bug

32

Computer Science 161 Fall 2016 Popa and Weaver

And that brings us to the HORROR 
that is a cellphone!

33

