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Lecture #5: 
On Safes, 

Sandboxes, and Spies

1



Computer Science 161 Fall 2016 Popa and Weaver

Now that we have some concepts...

Its time for a more deep dive
• Use this as a review of what we've learned so far and putting it into 

action

• Deep Dive #1: Safes

• Requirements

• Cost/benefit tradeoffs

• Detection & response countermeasures


• Deep Dive #2:  Sandboxes

• Detailed concept and objectives

• How to Sandbox on Linux, Old School

• How to Sandbox on Linux, New School


• Deep Dive #3: Spies
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So You Want to Buy a Safe...

• What are the actual requirements?

• Protect against:

• Fire damage?

• Low Grade Threats?

• Legal Liability?

• Determined Theft?
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Fire Damage

• Most "safes" you buy at Office Depot are not actual safes...

• They are not rated nor even well designed to keep out a burglar


• Rather, they are "fire safes": designed to prevent damage in case of a 
file

• Often rated by Underwriters Laboratories (UL): means tested to a given standard


• Two big categories

• Documents/guns/etc: Keeps temperatures below 350F


• Will keep that passport from burning

• Data safes: Keeps temperatures below 125F and humidity below 80%


• Computer media much more delicate

• Testing also indicates duration


• Security lesson: Know what you are protecting and what your threat is

• Don't expect a document-rated fire safe to keep a hard drive safe from damage in a fire

• Don't expect either to meaningfully stop a teenager with a crowbar


• And do your threat modeling before you commit to a security 
procedure!
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Low-Threat Entry & 
Legal Liability
• Some safes are concerned with rather 

low-threat attackers

• Toddlers and the like


• Classic example are CA state mandated 
"gun" locks

• A long list of "approved" devices

• That often can't even keep a toddler out!


• Security Lesson: Checkbox security and 
real security are often two different things
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High Threat: 
Ratings
• UL Listed ratings for various level of attackers

• Residential Security Container:

• 5 minutes by a professional with hammer etc


• Ratings up from there

• TL-15


• 15 minutes with power tools

• TRTL-30


• 30 minutes with power tools or cutting torch

• TXTL-60X6


• 60 minutes, working on all 6 sides, and the attacker even gets  
to use 8 ounces of nitroglycerine!


• These are conservative ratings:

• They assume an attacker with the proper set of tools  

and knowledge of the safe's construction oe

• Shannon's Maxim: "The enemy knows the system"

• Kerckhoffs's Principle: "A cryptosystem should be secure even if everything about the system, except the key, is public 

knowledge."
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Detection and Response

• A safe doesn't have to be a passive 
device!!

• In addition to the burglar alarms


• Relockers: Fail closed when under 
attack

• EG, a piece of glass which holds spring-loaded 

bolts open

• If the glass ever breaks, the additional bolts 

close and stay closed


• Very expensive false positives!
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The Sandbox...

• You have a lot of crappy code that take input 
from hostile users

• Often written in C/C++


• In an ideal world, you'd extinguish the 
dumpster fire...

• But if it is only burning within the dumpster, is it really 

harmful?


• The sandbox generally covers an entire 
process

• That way one can take advantage of operating-specific 

features that allow a process to restrict what it is allowed 
to do
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Why Sandbox At All?

• The sandbox is mostly good at making C/C++ memory 
exploits no longer exploitable


• Now the attacker needs to both exploit the C code AND exploit a weakness 
in the sandbox


• Defense in depth...

• But why bother with defense in depth?


• Because its cheaper!

• Cheaper to keep using the same crappy C and C++ code and put it in a 

letterbox than it is actually rewriting the code in a secure language!
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Sandbox Objectives

• From the Chromium Project:  
https://www.chromium.org/developers/design-documents/
sandbox


• Don't Reinvent the Wheel

• Principle of Least Privilege

• Assume Sandboxed Code is Malicious Code

• Be Nimble

• Emulation is Not Security
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Don't Reinvent The Wheel

• Modern operating systems offer different mechanisms for 
containment


• Modifying the OS to ad a new containment feature is going to be a loser: 
you will get it wrong


• When security systems require modifying the OS its often a big danger sign
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The Principle of Least Privilege

• In an ideal world, running the code in a sandbox should not require 
any more privileges than a normal user

• This is not the case on old-school Linux

• This is the case on new-school Linux and Windows


• This is critical: You don't want your sandboxing to make things 
worse!

• If your sandbox does require root you must design it to give up those privileges


• Also, whatever mechanism must be inheritable:

• Any process launched by a sandbox process must operate under the same strict 

restrictions

• OR the sandboxed process MUST NOT be able to launch another process!
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Assume Sandboxed Code is 
Malicious Code
• The sandbox must work if the code within it is 

compromised by an attacker

• So simply assume for the purposes of the sandbox that the code you are 

running is already compromised


• Must ensure complete mediation:

• After the sandbox itself hands control over to the running code, that code 

must not be able to access any resource beyond that necessary to perform 
its operation


• And that which it can access must be checked and treated as potentially 
hostile input
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Be Nimble

• Sandboxing adds overhead...

• But its often important to not add too much overhead, otherwise it gets 

unused


• So make an assumption:

• For correctness, you must assume malicious code

• For performance, you can assume only correct code


• Allows you to optimize your performance for the "good" 
case
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Emulation is Not Security

• Emulation primitives (Virutal Machines etc) are often not 
designed as security sandboxes!


• Relying on something misdesigned for sandboxing can be a problem!
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The Broker and the 
Target
• Most sandboxes separate out the problem into separate 

components

• That run as separate processes


• The Broker is the reference monitor/trusted computing base

• Its job is to start up the targets

• ALL requests for anything sensitive in the target must be passed to the broker


• The target is the sandboxed code

• Establish communication with the broker

• Provide an API for talking to the broker

• And then yield all other privileges
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Robustness...

• The sandboxed process also can now fail gracefully

• And not take the rest of the program down with it

• So you design around the notions of sandboxed programs failing
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And Don't Reinvent the Wheel #2: 
Just Download Someone Else's!
• Mozilla is finally adding sandboxing to Firefox...

• Thanks to Mitar for the note


• For Windows:

• Wrapper around Chrome's sandbox


• For Linux:

• Uses seccomp as the building block
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Old School Unix Sandboxing: 
the chroot jail
• People have wanted sandboxes for a long time...

• Far longer than the OSs have provided fine grained mediation necessary to 

create sandboxes


• The gen-1 Unix Sandbox:

• The chroot system call changes the definition / for the invoking process


• Thus it enforces a property:

• The process (and all processes it invokes, directly or indirectly) can not read 

or write to any new file outside the new directory

• But can still access existing files

19



Computer Science 161 Fall 2016 Popa and Weaver

Limitations of chroot


• It is a privileged operation!

• Because you can do things that would compromise the system otherwise:

• Create a directory with a file name etc/sudoers with the appropriate context

• Now chroot to that directory

• Now invoke sudo

• Voila, you have root!

• So any program using chroot must then drop it privileges to run as "nobody" or an otherwise unknown 

user


• It does not affect system call operation

• So a "jailed" process can still access the network, call the kernel (and therefore perhaps kernel 

bugs), etc etc etc...

• The "nobody" account actually still has privileges!  Like the ability to interfere with other 

processes also owned by the "nobody" user
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New School Linux Sandbox 
Building: seccomp
• Desired property:

• An application can read and write to specified "file descriptors", but otherwise invoke 

no other system calls

• File descriptors are more than just files but can be general communication pipes between 

processes


• seccomp enables a process to lock itself out of the system call 
interface:

• Enables read() and write() on open file descriptors

• Enables exit()

• Everything else is blocked

• An alternative form allows specifying a filter to only block some system calls, but this loses the 

elegance of 
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Using seccomp to create a sandbox

• Split things conceptually into a broker and one or more 
targets

• The targets are the sandboxed elements

• The broker controls the targets and is the trusted base


• The broker starts up the targets

• Using fork or clone

• Establishes communication channels to the targets

• Starts the target processes running


• The target process then invokes seccomp to give up any 
privileges
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Communication:

Lots to chose from...
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• Standard Unix pipes/file descriptors

• Basically shove bits to/from the sandboxed process

• Just like a network program


• Shared Memory

• A common pool of memory that both can read and write to

• Need to also use a semaphore to ensure coherency
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Drawing Time...
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Man Pages!

• "man x" is often the most important starting point

• Then you start googling for stack overflow examples


• Required reading man pages:

• chroot

• seccomp

• shm_overview
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Bugging and Physical Security: 
The Stuff of Spies
• Going to be mostly sans-slides:

• Notion of a SCIF/secured facility

• History of physical bugs

• How to bug someone today


• Inspired by this great essay: 

• https://tisiphone.net/2016/09/08/why-do-smartphones-make-great-spy-

devices/
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SCIF
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The Great Seal Bug
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The GUNMAN Bug
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And that brings us to the HORROR 
that is a cellphone!
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