
Computer Science 161 Fall 2016 Nicholas Weaver

Injection Attacks and  
Memory Safety 

Nicholas Weaver 
based on David Wagner’s slides from Sp 2016

1



Computer Science 161 Fall 2016 Nicholas Weaver

Administrivia

• You really really really want to attend discussion section this week

• More so than normal: This lecture covers the high-level overview of the dark arts of 

buffer overflow exploitation

• The discussions cover the low-level details you need: gdb and x86


• Midterms officially scheduled:

• 9/28 and 10/26 from 8:30-10:00

• Yes, the time sucks.  Blame Econ 1...


• Homework and project (tentative) schedule will be online soon 
too...


• We are adding more seats in the class
2



Computer Science 161 Fall 2016 Nicholas Weaver

What Properties Do We 
Want?
• Security is about maintaining one or more critical properties 

in the face of adversaries...

• For this, the property we want: 

The computer only executes the program as written

• No additional code runs, no control flow not present in the program


• Unfortunately for C/C++, this property does not exist in 
practice


• Today: The dark arts of exploitation

• Thursday: The (seemingly futile) DADA of prevention

3



Computer Science 161 Fall 2016 Nicholas Weaver

Nick Hates Being 
Here…  Cuz he’s stuck in coach

4



Computer Science 161 Fall 2016 Nicholas Weaver

5



Computer Science 161 Fall 2016 Nicholas Weaver

6



Computer Science 161 Fall 2016 Nicholas Weaver

7

#293 HRE-THR 850 1930  
ALICE SMITH  
COACH  
 
SPECIAL INSTRUX: NONE  



Computer Science 161 Fall 2016 Nicholas Weaver

8



Computer Science 161 Fall 2016 Nicholas Weaver

9

#293 HRE-THR 850 1930  
ALICE SMITHHHHHHHHHHH  
HHACH  
 
SPECIAL INSTRUX: NONE  

How could Alice exploit this? 
Find a partner and talk it through.



Computer Science 161 Fall 2016 Nicholas Weaver

10



Computer Science 161 Fall 2016 Nicholas Weaver

11

#293 HRE-THR 850 1930  
ALICE SMITH  
FIRST  
 
SPECIAL INSTRUX: NONE  
 



Computer Science 161 Fall 2016 Nicholas Weaver

12

#293 HRE-THR 850 1930  
ALICE SMITH  
FIRST  
 
SPECIAL INSTRUX: GIVE  
PAX EXTRA CHAMPAGNE.  



Computer Science 161 Fall 2016 Nicholas Weaver

13



Computer Science 161 Fall 2016 Nicholas Weaver

The Problem: 
Writing Off the End of an “Array”

14

char name[20];

void vulnerable() {
  ...
  gets(name);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

15

char name[20];
char instrux[80] = "none";

void vulnerable() {
  ...
  gets(name);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

16

char line[512];
char command[] = "/usr/bin/
finger";

void main() {
  ...
  gets(line);
  ...
  execv(command, ...);
}



Computer Science 161 Fall 2016 Nicholas Weaver

17

char name[20];
int  seatinfirstclass = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

18

char name[20];
int  authenticated = 0;

void vulnerable() {
  ...
  gets(name);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

19

char name[20];
int (*fnptr)();

void vulnerable() {
  ...
  gets(name);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

Linux (32-bit) process memory layout 

20

-0xC0000000

-0x40000000

-0x08048000

$esp

brk

Loaded from exec

-0x00000000

-0xFFFFFFFF



Computer Science 161 Fall 2016 Nicholas Weaver

Stack Frame

21

-0xC0000000

-0x40000000

-0x08048000

-0x00000000

To previous stack 
 frame pointer

To  the point at which 
 this function was called



Computer Science 161 Fall 2016 Nicholas Weaver

22

Code Injection



Computer Science 161 Fall 2016 Nicholas Weaver

Code Injection in Action

23

main() {
  f();
}

f() {
  int x;
  g();
}

0xFFFF0000

ret

main()

retx

f()

retbuf

g()

g() {
  char 
buf[80];  
  gets(buf);
}

Shellcode (pwnage!)



Computer Science 161 Fall 2016 Nicholas Weaver

Basic Stack Exploit

• Overwriting the return address allows an attacker to 
redirect the flow of program control.


• Instead of crashing, this can allow arbitrary code to be 
executed.


• Example: attacker chooses malicious code he wants 
executed (“shellcode”), compiles to bytes, includes this in 
the input to the program so it will get stored in memory 
somewhere, then overwrites return address to point to it.


• Often prepending a "Noop sled": a series of do-nothing instructions to allow 
the pointer into the shellcode to be imprecise

24



Computer Science 161 Fall 2016 Nicholas Weaver

25



Computer Science 161 Fall 2016 Nicholas Weaver

The (2nd) Most Spectacular 
Buffer Overflow Attack of All Time: Slammer
• Microsoft SQL server received requests on UDP port 1434

• UDP has no flow, you can just send requests…


• Someone sent a particular buffer overflow attack to a 
single MSSql server on the Internet…

• Cleanup from buffer overflow

• Get API pointers and pointer to self

• Create socket & packet

• Seed PRNG with getTickCount()

• While 1

• Increment PRNG

• Send packet to PRNG address as fast as possible


• 404 bytes total

• Worldwide Spread in 10 minutes

26

Header

Oflow

API

Socket

Seed

PRNG

Sendto

0x000



Computer Science 161 Fall 2016 Nicholas Weaver

The Most Spectacular: 
Witty…
• ISS security software had a vulnerability like Slammer

• Simple stack overflow when it receives a magic UDP packet

• It was fixed on March 17th, 2004…


• But on March 19th, 2004, someone released a worm

• Just like the Slammer worm, but with a twist…

• Repeat forever:

• Send 20,000 attacks…

• Select a random disk

• Select a random block on disk

• Erase that block


• Oh, and much of the initial infection occurred in the US Army!
27



Computer Science 161 Fall 2016 Nicholas Weaver

Oh, and you can still do it

Today...
• The NSA screwed up and, two weeks ago, 

someone released a bunch of NSA tools 
for attacking firewalls...

• Including several exploits


• EXTRABACON, targeting Cisco ASA 
firewalls

• A single packet, UDP stack overflow in the SNMP code


• You could make "Slammer 3" targeting this 
vulnerability

28



Computer Science 161 Fall 2016 Nicholas Weaver

29

void vulnerable() {
  char buf[64];
  ...
  gets(buf);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

30

void still_vulnerable?() {
  char buf = malloc(64);
  ...
  gets(buf);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

31



Computer Science 161 Fall 2016 Nicholas Weaver

32

void safe() {
  char buf[64];
  ...
  fgets(buf, 64, stdin);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

33

void safer() {
  char buf[64];
  ...
  fgets(buf, sizeof(buf), stdin);
  ...
}



Computer Science 161 Fall 2016 Nicholas Weaver

34

void vulnerable(int len, char 
*data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}

memcpy(void *s1, const void *s2, size_t n);



Computer Science 161 Fall 2016 Nicholas Weaver

35

void safe(size_t len, char *data) {
  char buf[64];
  if (len > 64)
    return;
  memcpy(buf, data, len);
}



Computer Science 161 Fall 2016 Nicholas Weaver

36

void f(size_t len, char *data) {
  char *buf = malloc(len+2);
  if (buf == NULL) return;
  memcpy(buf, data, len);
  buf[len] = '\n';
  buf[len+1] = '\0';
}

Vulnerable! 
If len = 0xffffffff, allocates only 1 byte

Is it safe?  Talk to your partner.



Computer Science 161 Fall 2016 Nicholas Weaver

37



Computer Science 161 Fall 2016 Nicholas Weaver

38

void vulnerable(int len, char 
*data) {
  char *buf;
  if (len < 0) len = -len;
  buf = malloc(len + 1);
  memcpy(buf, data, len);
}



Computer Science 161 Fall 2016 Nicholas Weaver

39

void vulnerable() {
  char buf[64];
  if (fgets(buf, 64, stdin) == NULL)
    return;
  printf(buf);
}



Computer Science 161 Fall 2016 Nicholas Weaver

Fun With Printf…

printf("100% dude!");
⇒ prints value 4 bytes above retaddr as integer

printf("100% sir!");
⇒ prints bytes pointed to by that stack entry 

       up through first NUL

printf("%d %d %d %d ...");
⇒ prints series of stack entries as integers

printf("%d %s");
⇒ prints value 4 bytes above retaddr plus bytes 

                 pointed to by preceding stack entry
printf("100 
% nuke’m!");

⇒ writes the value 3 to address pointed 
       to by stack entry

40



Computer Science 161 Fall 2016 Nicholas Weaver

Of course strcpy is bad too

41

void iHateC(char *s){
   char p[80];
   …
   strcpy(s,p);

…
}



Computer Science 161 Fall 2016 Nicholas Weaver

Oh, but you think strncpy is safe?

• Insert diabolical laughter here….

42

void iHateC(char *s){
   char p[80];
   …
   strncpy(s,p,size_of(p));

…
printf(“%s”, p);

}



Computer Science 161 Fall 2016 Nicholas Weaver

The Defensive Arms 
Race…
• The real solution to these problems: 

DO NOT USE C OR C++ FOR ANYTHING 
WHICH MIGHT COME FROM THE 
OUTSIDE WORLD!!!

• Use Java, Python, Rust, Go, etc etc etc…


• But instead programmers seem to want 
to keep using C?!?

• Now I know I said last time don’t go blindly blaming 

the users, but I think we can make an exception in 
this case…


• “Teaching people ‘secure’ programing in C or C++ is 
like teaching driver safety in 1920s race cars”

43



Computer Science 161 Fall 2016 Nicholas Weaver

Idea #1: 
Stack Canaries/Stack Cookies…
• Insert a constant random value just before 

the return address in each stack frame

• Before returning, check that the canary with a stored 

value


• Unfortunately many ways to bypass

• In Windows could trigger the exception handler instead

• Can guess the canary

• And use tricks to reduce the space

• Vulnerabilities that allow reading memory to to read the 

cookie

• Or a vulnerability that allows overwriting the stored copy!

44

Args

Buffer

Canary

Return Address



Computer Science 161 Fall 2016 Nicholas Weaver

Idea #2: 
Non-Executable Stack Space…
• Why should the stack contain executable code?

• If we remember from 61c, the TLB can specify that a memory address can 

contain code or just memory


• So why allow code on the stack at all?

• Apart from some compilers wanting to do that with “trampolines” or “thunks”


• All fine and good, but…

• Load executable code into the heap

• Often with a "Heap spray": Seed lots of copies with a large 'noop sled' so you can just 

get lucky

• Jump to that 

45



Computer Science 161 Fall 2016 Nicholas Weaver

Idea #3: 
Data Execution Protection/ W^X
• Lets just make ALL the memory either executable or writeable

• So now you can’t write code and run it…


• Solution: Jump into Libc or Return Oriented Programming

• There is so much other code available


• Either just execute the function you want:

• Set up the stack to run exec(“create-backdoor”)

• Set up a series of return statements to execute “gadgets” in the code

• This is deep, hard to understand voodoo which we won’t go into detail but…

• There are tools to do this for you automatically: ROPgadget

• Of course its Open Source too! 

https://github.com/JonathanSalwan/ROPgadget/tree/master
46



Computer Science 161 Fall 2016 Nicholas Weaver

Idea #4: 
Lets make that hard to do
• Address Space Layout Randomization…

• Instead of having all the text segments in a constant arrangement, lets randomize it at 

runtime…


• OK without W^X, much more powerful with W^X

• Since bypassing W^X requires only executing existing code, which requires knowing the 

address of existing codes, but ASLR randomizes where the existing code is...


• Good idea but…

• Some libraries can’t be randomized so if a program uses those ASLR doesn’t actually work!

• Information leakage attacks: 

If you can get the address of a single function in a library,  
you’ve defeated ASLR and can just generate your string of ROP gadgets at runtime


• iPhone "Trident" exploit chain: One vulnerability was an information leakage to enable ASLR bypass

47



Computer Science 161 Fall 2016 Nicholas Weaver

Idea #5: 
Write “Secure” code…
• Well, we will get to that next time, but…

• I’ll argue you can make your C better but you can’t make it secure


• So I still vote for idea #6

• “If you want to use C or C++ in a new project I will go and whack you upside 

the head with a 2x4”

48



Computer Science 161 Fall 2016 Nicholas Weaver

Real World 
Exploitation
• It gets even more complicated one you hit the real world:

• http://documents.trendmicro.com/assets/pdf/shell-on-earth.pdf

• Evaluates all the 2016 pwn2own exploits


• Need to often chain multiple vulnerabilities together

• Take over browser, then escape a sandbox, then escalate to owning the entire 

system

• It takes 2-3 unpatched exploits to take over a target’s iPhone


• Common vulnerability is actually “use-after-free”

• Often used to enable writing a value someplace in memory: 

Use to overwrite a stored function pointer pointing to your chain of ROP gadgets

• But again, this is strictly caused by C lack of safety

49



Computer Science 161 Fall 2016 Nicholas Weaver

And if I get to it: 
Meme of the lecture…

50

• True:  Its called “Machine Learning”


