Announcements

• Project due Sept 20
Recall: Block cipher

A function $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$. Once we fix the key K, we get

$E_K : \{0,1\}^n \rightarrow \{0,1\}^n$ defined by $E_K(M) = E(K,M)$.

Three properties:

- **Correctness:**
 - $E_K(M)$ is a permutation (bijective function)

- **Efficiency**

- **Security**
Security

For an unknown key K, E_K “behaves” like a random permutation.

For all polynomial-time attackers, for a randomly chosen key K, the attacker cannot distinguish E_K from a random permutation.
Block cipher: security game

- Attacker is given two boxes, one for E_K and one for a random permutation
- Attacker does not know which is which
- Attacker can give inputs to each box, look at the output
- Attacker must guess which is E_K

??? Which is E_K???
Security game

For all polynomial-time attackers,

\[\Pr[\text{attacker wins game}] \leq \frac{1}{2} + \text{negl} \]
Use block ciphers to construct symmetric-key encryption

- Want two properties:
 - IND-CPA security even when reusing the same key to encrypt many messages
 - Can encrypt messages of any length
Desired security: indistinguishability under chosen plaintext attack (IND-CPA)

Challenger

K

Enc

M

C

M₀, M₁

Encₖ(Mₜ)

random bit b

Here is my guess: b’
IND-CPA

An encryption scheme is IND-CPA if for all polynomial-time adversaries

\[\text{Pr[Adv wins game]} \leq \frac{1}{2} + \text{negligible} \]

Note that IND-CPA requires that the encryption scheme is randomized

(An encryption scheme is deterministic if it outputs the same ciphertext when encrypting the same plaintext; a randomized scheme does not have this property)
Difference from known-plaintext attack from last time

- The extra queries to Enc_K
- Why is IND-CPA a stronger security?
 - The attacker is given more capabilities so the IND-CPA scheme resists a more powerful attacker
Are block ciphers IND-CPA?

Recall: $E_K : \{0,1\}^n \rightarrow \{0,1\}^n$ is a permutation (bijective)
Are block ciphers IND-CPA?

• No, because they are deterministic
• Here is an attacker that wins the IND-CPA game:
 – Adv asks for encryptions of “bread”, receives C_{br}
 – Then, Adv provides ($M_0 = bread$, $M_1 = honey$)
 – Adv receives C
 – If $C = C_{br}$, Adv says bit was 0 (for “bread”), else Adv says bit was 1 (for “honey”)
 – Chance of winning is 1
Each block encrypted with a block cipher
Later (identical) message again encrypted
Modes of operation

Chain block ciphers in certain modes of operation

– Certain output from one block feeds into next block

Need some initial randomness IV (initialization vector)

Why? To prevent the encryption scheme from being deterministic
Counter mode (CTR)

Last time: ECB, CBC
CTR: Encryption

Enc(K, plaintext):
- If \(n \) is the block size of the block cipher, split the plaintext in blocks of size \(n \): \(P_1, P_2, P_3, \ldots \)
- Choose a random nonce
- Now compute:

\[
\text{The final ciphertext is } (\text{nonce}, C_1, C_2, C_3)
\]

Important that nonce does not repeat across different encryptions.
CTR: Decryption

Dec(K, ciphertext=[nonce, C_1, C_2, C_3,..].):
• Take nonce out of the ciphertext
• If n is the block size of the block cipher, split the ciphertext in blocks of size n: C_1, C_2, C_3,..
• Now compute this:

Output the plaintext as the concatenation of P_1, P_2, P_3, ...

Note, CTR decryption uses block cipher’s encryption, not decryption
CBC vs CTR

Security: If no reuse of nonce, both are IND-CPA.

Speed: Both modes require the same amount of computation, but CTR is parallelizable.
Pseudorandom generator
(PRG)
Pseudorandom Generator (PRG)

• Given a seed, it outputs a sequence of random bits
 \[\text{PRG}(\text{seed}) \rightarrow \text{random bits} \]

• It can output arbitrarily many random bits
PRG security

- Can PRG(K) be truly random?

No. Consider key length k. Have 2^k possible initial states of PRG. Deterministic from then on.

- A secure PRG suffices to “look” random (“pseudo”) to an attacker (no attacker can distinguish it from a random sequence)
Example of PRG: using block cipher in CTR mode

If you want m random bits, and a block cipher with E_k has n bits, apply the block cipher m/n times and concatenate the result:

$$\text{PRG}(K, \text{IV}) = E_k(\text{IV}, 1), E_k(\text{IV}, 2), E_k(\text{IV}, 3), \ldots, E_k(\text{IV}, \text{ceil}(m/n))$$
Application of PRG: Stream ciphers

• Another way to construct encryption schemes

• Similar in spirit to one-time pad: it XORs the plaintext with some random bits

• But random bits are not the key (as in one-time pad) but are output of a pseudorandom generator PRG
Application of PRG: Stream cipher

Enc(K, M):
- Choose a random value IV
- Enc(K,M) = PRG(K, IV) XOR M

Can encrypt any message length because PRG can produce any number of random bits
Summary

- Desirable security: IND-CPA
- Block ciphers have weaker security than IND-CPA
- Block ciphers can be used to build IND-CPA secure encryption schemes by chaining in careful ways
- Stream ciphers provide another way to encrypt, inspired from one-time pads
Start asymmetric cryptography on board